1981 Winter Simulation Conference Proceedings
T.1. Oren, C.M. Delfosse, C.M. Shub (Eds.)

4

DISCRETE EVENT SIMULATION ON MINI- AND MICROCOMPUTERS:
SOME EXPERIMENTS WITH THE PASCAL LANGUAGE

Andrew F. Seila
Der-Fa Robert Chen
University of Georgia

ABSTRACT

Currently, mini- and microcomputers are finding application in many areas of busi-

ness and scientific work.
studies is virtually nonexistent.

However, the use of small computers for simulation
In this paper, we discuss the language require~

ments for discrete event simulation and present the features of the Pascal lan-
guage that make it a natural language to use for writing simulation programs.
Finally, we discuss our experiences in developing several nontrivial simulations

using Pascal.

1. INTRODUCTION

Since the introduction of the microcomputer in
1975, computing has undergone a transformation so
radical that one could call it a metamorphosis.
The costs of mini- and microcomputers (small com-
puters) have steadily decreased, while the can-
abilities, in terms of hardware capability and
software availability have increased. As a result,
smal? computers are finding convenient application
in areas of production and inventory control,
accounting, marketing management, and many other
problem areas. In contrast, with the exception of
the myriad of computer games available, small com-
puters have had virtually no effect upon the use
of simulation as a problem solving tool. In this
presentation, we discuss the use of Pascal, a
language that is widely available on small com-
puters, for discrete event simulation.

2. DISCRETE EVENT SIMULATION AND SIMULATICN LAN-
GUAGES

Discrete event simulation involves the realization,
within a computer, of a system model that changes
state only at discrete points in time, called
events, The model consists of a collection of en-
tities which have attributes and may belong to
sets. Changes of the state of the system involve
changes in the number of entities in the system,
their attributes, and/or their set membership.

For example, in a queueing model, the system con-
sists of two types of entities--customers and
servers, Customers may have attributes that de-
scribe their priority or record information (e.g.,
arrival time); servers' attributes indicate their
status (idle or busy) and may include specific in-
formation such as service rate. The queue in which
customers wait for service is a set to which

customers may or may not belong, devending upon
whether a server is available upon arrival.

In order for a discrete event simulation to move
through time, the program must maintain a list of
events, ordered by time of octurrence. This is
simply a special type of set which contains a
special kind of entity: event notices. Event
notices must have at least two attributes: the
time of occurrence and the identity of the event
that occurs at that time. For example, in the
queueing simulation, there are two events which
result in state changes for the system--the arriv-
al of a customer and the completion of a service.
For each type of event, the simulation must have a
routine which makes the appropriate state changes
in the system,

In order to realize a discrete event simulation,
the language used must provide facilities for re-
presenting entities, attributes and sets, for
manipulating the entities in sets (inserting and
removing them, and searching through the set), and
for doing scientific computations (floating point).
The simulation languages SIMSCRIPT, SIMULA, GPSS,
GASP, and SLAM, which are available only on large
mainframe computers, provide these features.

Recently, Bryant (1981a, b) has developed a simu-
lation Tanguage called SIMPAS which is based upon
the Pascal Tanguage. SIMPAS consists of a pre-
processor which converts source statements into
Pascal statements. The Pascal program must then
be compiled, linked and executed. SIMPAS has been
implemented on a PDP VAX 11 mini-computer and a
shorter version, called Micro~-SIMPAS (Bryant,
1981c}, has been implemented on a Terak 8510/a
Graphics Computer. The only simulation that has
been developed and reported using SIMPAS is that

81CH1709-5/81/0000-0041$00.75 (:) 1981 IEEE

42 ' A.F. SEILA and D-F.R. CHEN

of an M/M/1 queue,

3. THE PASCAL LANGUAGE AND DISCRETE EVENT SIMU-
LATION

Pascal is a blogk structured programming language,
similar to PL/1, that was developed in 1971 by
Nicholas Wirth (Jansen and Wirth, 1974). The lan-
guage is designed with two main objectives: to
facilitate systematic programming, and to allow
generation of efficient code on currently avail-
able computers. Much attention has been given to
standardizing Pascal and to making the code thus
generated portable, Currently, Pascal compilers
are available for computers costing as little as
$3,000-$4,000, and there is some reason to believe
that Pascal might become the standard prograrming
Tanguage for microcomputers in the future,

A review of all of the features of Pascal is be-
yond the scope of this short paper. le refer the
interested reader to the textbooks that are
currently avaailable. The following is a Tist of
the special features of Pascal that make it a
natural language for discrete event simulation:

Record variables ~ A record is a collection
of data elements which may be of differ-
ent types. This provides a means for re-
presenting entities and their attributes,
and event notices.

Pointer variables and dynamic data types -
Pascal allows the dynamic creation and
disposal of record variables, Pointer
variables allow one to access the con-
tents of dynamically created records.
This provides a means for creating and
destroying entities and event notices,
and performing the activities necéssary
for entities and event notices to belong
to Sets.

Scalar data types - The programmer can de-
fine the "set of values" of a variable.
This is primarily useful in making the
simulation program self-documenting.

4, DEMONSTRATION PROJECT

The authors have conducted a project whose objec-
tive was to demonstrate the feasibility of using
Pascal as a discrete event simulation language,

* and therefore, by impiication, to demonstrate the
feasibility of using small computers to perform
nontrivial simulations. This project consisted of
two efforts:

1. Development of several realistic discrete
event simulations; and

2. Development of a library of routines
(functions and procedures) commonly used
in discrete event simulations.

Al1 programs were developed on a Texas Instruments
990 Model 10 minicomputer using TI Pascal. The
models simulated were:

a. A priority queueing system;

b. The o0il tanker model in Pritsker (1974,
p. 201).

c. A model of lumber yard and dry kiln ope-
rations;

d. A production-inventory system; and

e. A multi-item inventory system.

5, PROJECT RESULTS

The project showed that it is possible to develop
discrete event simulations using Pascal with essen-
tially the same level of effort that is required
using a special purpose simulation language. This
means that-relatively sophisticated, realistic
simulations are not only possible, but practical
on microcomputers costing as little as $3,000-
$4,000. The limitation on the possibie size and
complexity of the simulation is imposed primarily
by the size of the computer memory and the pro-
grammer's imagination,

In fact, we have found that Pascal may have some
advantages over discret event simulation lan-
guages. Since Pascal is not a simulation language,
the responsibility for maintaining the 1ist of
scheduled events and operating the timing routine
rests with the programmer. The pedagogic value of
this in a simulation course is clear since these
aspects are hidden from the programmer's view in a
simulation Tanguage. Moreover, if the simulation
is being developed outside the.classroom, the pro-
grammers gain added confidence in the final product
by being able to "see" everything that goes on.
Finally, if efficiency were a consideration, it is
likely that a program written “from the ground up"
in Pascal would be somewhat more efficient than one
written using a simulation language. This results
from the fact that activities such as scheduling
events or searching through sets are performed in
simulation Tanguages by general routines having
options that frequently are not used. In Pascal,
these options need not be included (if they aren't
needed) and the program does not have to spend

time checking for them.

We also found that Pascal has some noteworthy dis-
advantages, relative to simulation Tanguages.
Since the programmer is responsible for all activ-
ities in the simulation program, the danger exists
that subtle bugs can be introduced. For example,
in our first simulation program we had a bug that
was caused by using the time attribute of the
current event after it had been changed and sched-
uled as another event. This problem would not
have been allowed by a simulation language. A
certain amount of discipline on the part of the
programmer can avoid most problems of this type.

A second major disadvantage of using Pascal (and,
for that matter, any general purpose language) is
that routines for doing common activities such as
scheduling events, cancelling events, searching
through sets, etc., must be provided by the pro-
grammer, We have developed a small library of
commonly used routines to help overcome this prob-
lem. Some languages, such as GASP, have built-in
routines for displaying data in plots. Routines of
this type are currently not available in Pascal;
however, we hope they will be available in the

DISCRETE EVENT SIMULATION ON MINI- AND MICROCOMPUTERS

future,

Finally, we feel that the block structure of
Pascal is a major advantage in writing simulation
programs, First, the block structure, combined
with scalar data types and the ability to use
identifiers of any length, allows programs to be
almost self-documenting. Since working simula-
tion programs are quite complex it is very impor-
tant that they be thoroughly documented, and
Pascal makes much of this effort quite natural.
Secondly, the block structure of the language
allows a team to use a structured approach to pro-
gram development., This approach simplifies the
problem of parcelling out the programming assign-
ments and helps assure that the parts will fit
together correctly,

In summary, using Pascal, we have found that it is
possible to develop discrete event simulations on
mini- and microcomputers with approximately the
same amount of effort required using a simulation
language. This means that, if simulation prac-
titioners choose to use Pascal, much simulation
work can now be done on small computers. This
fact, we feel, has the potential to greatly alter
simulation practice by moving it from the large,
centralized organizations with access to a large
computer, to any enterprise with access to a small
computer,

REFERENCES
Bryant, R. M. (1981a), SIMPAS User Manual, Techni-

cal Report No..54, Academic Computing Center,
The University of Wiscon, Madison,

Bryant, R. M. (1981b), SIMPAS: A Simulation Lan-
quage Based on Pascal, Report No. 55,
Academic Computing Center, The University of
Wisconsin, Madison,

Bryant, R. M. (1981c), Micro-SIMPAS: A Micropro-
cessor-Based Simulation Lanquage, Paper pre-
sented at the Annual Simulation Symposium,
Tampa.

Jdensen, K. and N. Wirth, Pascal: User Manual and
Report, Lecture Notes in Computer Science 18,
Snringer-Verlag, Berlin, New York.

Pritsker, A. A. B. (1974), The Gasp IV Simulation
Language, John Wiley, New York.

43

