1981 Winter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

353

A COMPARISON OF METHODS FOR SIMULATING COMPUTER BUS ARCHITECTURES

Larry Wear, Ph.D.

Professor of Computer Science

Ron Guilmette, Mike Spann, Mike Chiusolo
Department of Computer Science
California State University, Chico

Chico, California

95929

This paper describes three methods that were used to investigate multiprocessor

bus architectures.
SIMULA.

The models described were implemented in FORTRAN, GPSS, and
Characteristics of the three implementations, such as program length,

program memory requirements, execution time and ease of use are compared.
Results of the simulation of a single bus system are presented to show how the
varjous parameters affect system performance.

1. INTRODUCTION

The recognition of the importance of simulation Ted
to the development of several languages and support
packages as the tools for simulation, e.g. CSL,
DMOS, DEMOS, GASP, GPSS, GSP, SIMSCRIPT, SIMPAC and
SIMULA. Each of these has its own characteristics,
advantages, and disadvantages.

This paper documents the simulation of four com-
puter architectural models in three different
languages. The models simulate the impact of dif-
ferent types of bus architectures on a multiproces-
sor system. The four bus architecture models that
were simulated are the following:
MULTIBUS and CROSS BAR SWITCH (Leibowitz 1978).
The simulations of each of these bus architecture
models were written in three different languages--
FORTRAN, GPSS and SIMULA.

These models aliow for a variable number of pro-
cessors, memory modules, I/0 units and buses. The
cycle time of the processor, memory modules, the
transfer rate of the bus, and the mean rate of I1/0
requests can be defined independently. The inter-
arrival time of I/0 requests may be based upon any
arbitrarily selected distribution. Processors in
the models execute three kinds of instructions
which last for one, two, or three CPU cycles. The
distribution of these instructions is also a user
defined parameter.

The output from the simulation is the percentage of
ACTIVE, BLOCKED, FROZEN and FREE time on each in-
dividual piece of hardware in the model.

The statistics have been analyzed and transformed
to graphical representations for easy interpreta-
tion.

UNIBUS, DUAL BUS,

2. FORTRAN SIMULATION
2.1 Description of FORTRAN Program

The FORTRAN simulation program is table driven.

A1l parameters used by the program are contained

in the state table, except for a few pieces of
global data (i.e. clock, clock increment). One of
the most powerful features of this program is the
way in which the bus structure is defined in the
state table by means of a bit map. This method
allows virtually any type of architecture to be
defined. The FORTRAN program is broken up into the
following three main sections:

State table. Each item in the bus structure (this
includes busses, memories, cpus and I/0 units) is
represented in a state table. Each unit has one
entry in the table. This entry includes specific
information pertinent to its operation (i.e. speed,
interarrival time, write/read capability, priority,
interleaving...etc.).

Clock. Before each clock increment, the state
table is to be scanned. The clock is then incre-
mented to the time of the next available unit in
the table.

Statistics gathering. After each increment of the

clock, the state table is scanned and each unit's
entry is updated with how long it was ACTIVE,
BLOCKED, FROZEN or FREE. Request queue Tengths are
also recorded.

2.2 Advantages of the FORTRAN Implementation
1. Everyone working on the project programmed in

FORTRAN. This eliminated the need to learn
a new language before developing the simulation.

81CH1709-5/81/0000-0353$00.75 @ 1981 IEEE

354 . Larry WEAR

2. The FORTRAN used was a subset of FORTRAN IV
and therefore easily transportable to many
computers, including most minis.

3. Since the simulation could be run on a ocal
winicomputer, a HP1000F, turnaround time was
very good.

4. Execution time was less than for the SIMULA
and GPSS simulations.

2.2 Disadvantages of the FORTRAN Implementation

1. Because FORTRAN was not designed to be a
simulation language, the program was quite
long, approximately 500 1ines.

2. 1Initial design was more complex because of the
need to create many simulation primitives
(i.e. clock, state changes...etc.).

3. Debugging the program was difficult. This was
partially because the primitives that are pro-
vided in a simulation Tanguage had to be de-
bugged in addition to the model itself.

2.3 Summary of the FORTRAN Program and Model

Because of the large size of this FORTRAN program,
it was decided to incorporate the capability of
simulating all of the different types of bus
structures. This required much more variability
and forethought into the initial design, and
increased the debug and test phase of the program
development, -

3. GPSS SIMULATION
3.1 Description of GPSS Program

The GPSS model is currently capable of simulating
the UNIBUS, MULTIBUS, and CROSS BAR switching
system topologies. With minor modifications, it
could simulate a multibus/multiported memery
system.

The differences between the three currently im-
plemented modéls are very minor. For example,
the only difference between the MULTIBUS and the
UNIBUS versions is the substitution of one 1ine
of code which defines the (constant) number of
busses to be used during simulatiion. This value
is simply set to one for the UNIBUS version. The
modifications reguired to convert the MULTIBUS
version to the CROSS BAR version consists of the
substitution of two lines of code to provide for
the fixed time overhead of cross-bar bus connec-
tion as opposed to the variable overhead required
for the MULTIBUS system.

3.2 Advantages of GPSS Implementation

1. Because GPSS has many simulation primitives
built into the language, (Schriber 1974), the
program was short, about 150 lines of code.

2. Generation of output statistics was simpii-
fied because many GPSS statements cause
statistics to be gathered automatically.

3. A variety of distributions can be specified
for independent variables.

4, Because GPSS is interpretive, consistancy
checks are automatically performed and this
reduces development and debugging time.

3.3 Disadvantages of GPSS Implementation

1. Execution time for the model was relatively
easy.

2. GPSS s not available on as many machines
as FORTRAN and therefore the program is not as
transportable as the FORTRAN version.

3.4 Summary of the GPSS Program and Model

The primitives available in GPSS made development
of the program relatively easy. The features of
the language made the program short and gathering
statistics was also quite easy. The major dis-
advantage of the GPSS model was the tong execution
time.

4. SIMULA SIMULATION
4.1 Description of SIMULA Program

The SIMULA model was implemented using the DEMOS
(piscrete Event Modeling on Simula) package
developed by Dr. Graham Birtwistle (1981).
University of Calgary using the activity diagram
method he advocates. - Using this approach, the
model took 4-5 man hours to design, code and test.

Running approximately 150 lines of highty legible
SIMULA code, it will run interactively, with the
user defining the number of busses, CPU's, 1/0
modules, memory modules, and the timing character-
istics of each module, or it can be run from a
batch stream. The output is in the form of tables
of numbérs, histograms, and statistical analysis
of the tables of numbers.

4.2 Advantages of SIMULA Implementation

1. SIMULA, a superset of ALGOL-60 is easy to
code and very readable. (Birtwistle 1973).

2. The data collecting and reporting tools of
DEMOS allows gathering of any data easily.

3. The tracing and debugging features of DEMOS
simplify debugging modifications to the model,
and varifying proper operation of the model.

4.2 Disadvantages of SIMULA Implementation

1. Being a high level, general purpose simulation
language, models constructed using SIMULA are
usually bigger (object size) and require more
CPU time than a custom model in a Tover level
Tanguage.

2. Our SIMULA compiler generates extremely in-
efficient code, and some in some areas, of
questionable reliability. This probiem could
be traced to the age of our compiler (it was
written in 1968). A new compiler should be
availabTe soon so this should not be seen as
a permanent prooiem.

3. SIMULA is available only on large machines

A COMPARISON OF METHODS FOR SIMULATING COMPUTER BUS ARCHITECTURES 355

(cbc, IBM, DEC, VAC). As a result, the high
cost of computer time for these large machines
must be considered in program development.

4.3 Summary of SIMULA Model and Program

SIMULA offers an interesting (but often frustrat-
ing) range of trade-offs. On one hand it produces
elegant, easily read and modified code. Modifica-
tions took an average of five to ten minutes for
this program. On the other hand the inefficiency
of the generated programs resulted in a constant
worry about time Timits, memory size and other
such problems, rather than the correctness of the
model.

5. RESULTS OF SIMULATIONS

The results for the three simulations were compar-
ed for the model shown in Fig. 1. The output from
the three simulations were compared to verify
correctness. A1l three simulations gave results
that were within three percent for all parameters
measured.

The results of the simulations are shown as plots
of relative utilization of each of the functional
units. The statistics gathered are FREE, FROZEN,
BLOCKED and ACTIVE. Fig. 2-5 should be examined
to see exactly how the states are defined for each
module in the system. After some deliberation,

we decided that by observing what percentage of
the time each functional unit was in each of these
states we could determine the relative efficiency
of a given architecture with a minimum of numbers.

cpPU
MEMORY
1
MEMORY
2
1/0
Fig. 1. Model for a Single Bus Two

Memory Module System

Fig. 6 shows the percent ACTIVE time for the CPU,
I/0, MEMORY and BUS as a function of 1/0 request
frequency (number of instructions between requests),
The figure shows that the CPU ACTIVE time drops

to zero as the frequency of I/0 requests increases.

The percent ACTIVE as a function of memory cycle
time, is shown in Fig. 7. As one would expect,
when very fast memory is used the CPU can execute
nearly 100% of the time. Also memory ACTIVE
increases directly with memory cycle time.

CPU utiTization is shown as a function of both
memory cycle time and I/0 request rate in Fig. 8.
This figure confirms that CPU utilization in-
creases as memory cycle time decreases and as
1/0 requests decrease.

6. CONCLUSIONS

Developing three separate models led to some
interesting observations. The three simulations
were developed on three different computer systems.
The SIMULA and GPSS programs were written on

CDC systems and the FORTRAN version was written for
an HP system. Because of this it was not possible
to make direct comparisons of the execution time
for the different simulations. However, the
FORTRAN version seemed to run several times faster
than either the SIMULA or GPSS versions. This
could be very significant if the simulations are
going to be executed many times.

Both the SIMULA and GPSS simulations were much
shorter than the FORTRAN version, by approximately
four-to-one. There was a direct relation between
the program length and the time required to develop
the program. Besides being shorter than the
FORTRAN program, the other two were easier to read
and understand.

The three different programs were developed inde-
pendently; this led to some interesting, if not
surprising discoveries. The three teams develop-
ing the programs supposedly started with the same
models. However, as soon as the first results
were compared, it became obvious that there were
significant differences in the results. This led
us to take a more careful look at the assumptions
upon which the models were based and we found that
what one persaon thought was an insignificant modi-
fication of the model could cause definite differ-
ences in the results, If we had only developed
one simulation it is quite possible that some of
our results would have been in error. These errors
would have been difficult to find since many of
the results would have been nearly correct. Each
simulation provided erroneous results along with
valid ones. By attempting to resoive the areas of
disagreement, some of the problems of the models
were exposed. Activity diagrams described by
Birtwistle were quite useful in finding subtle
differences in the programs.

Developing simulations in both a simulation langu-
age and a general purpose language has several ad-
vantages. The SIMULA/GPSS versions can be imple-
mented quickly and can serve as a design for the
FORTRAN version. The FORTRAN version can be used
when execution time and transportability are im-
portant. Finally, having two separate models gives

356 Larry WEAR

a good validity check on the programs.

cPu
STATE
SEE READ
FETCH INSTRUCTION ACTIVITY
OF CYCLES o
> | | acTive
HOLD gsz I HOLD (2 { Howo (1)
READ
' SEE READ
L YES OR WRITE
WRITE MEM READ MEM ACTIVITY
I 1
-———,—-—-‘———-—-—-——-‘——--—-—bﬁ-————-—— e —— ——]
‘ ; , CRERTE 170
—<TIME FOR 1/0 >__ REGUEST
YES
Fig. 2. CPU Activity Diagram 1/0 UNIT
FROM CPU STATE
FREE
WAIT UNTIL 1/0 REQUEST
SEE READ OR
WRITE ACT
ACTIVE
YES o
CALCULATE
'---i<:'XFER COMPLETE NEXT ADDRESS
1 No :]

Fig. 3. 1I/0 Unit Activity Diagram

A COMPARISON OF METHODS FOR SIMULATING COMPUTER BUS ARCHITECTURES 357

1) 1/0 or CPU | MEM BUS

"SELECT PORT & BUS

I BLOCKED

WAIT UNTIL
PORT & BUS AVAILABLE

WRITE TO PORT ACTIVE ACTIVE | ACTIVE
\ ACTIVE
PORT
SERVICE
—— — —_— 8y . _]
Fig 4. VWrite Activity Diagram
1, /0 orR cpul MEM BUS
SELECT PORT & BUS
BLOCKED
WAIT UNTIL
PORT & BUS AVAILABLE
EQUEST
ADDRESS & REQUEST DATA ACTIVE ACTIVE ACTIVE
WAIT UNTIL DATA READY FROZEN ACTIVE
(PORT SERVICE)
BUSES §— — —_ - — - — —
ACQUIRE BUS FROZEN BLOCKED
— — _ —_ 1]
READ DATA ACTIVE ACTIVE ACTIVE

—— — — &_ — P— ——— — —— ——— o SY— e & —— —a.

Fig. 5 Read Activity Diagram

358 Larry WEAR

50.

mm— - - - .-——;-o—
X Jessee o9
e ..ooooooo-»""" ¢ cseoesess
40— \ B Y PRI it R cePu
ol..‘. - ans e e
0‘.. !
° 1/0
30 —t | - - — ; — - cusp ¢ e
o I menw
20 . T i BUS
[0} P P IO NNV I U S IR [N P
e 5
i '. A

N .2 .3 .4 .5 .6 g .8 .9 1.0
Number of Instructions (x 1000) per I/0 request

Fig. 6. ACTIVE Time versus I/0 Frequency

100.

90. LEW IXY TN
te, . ‘ cCPU
LY) - e amp ¢
70.F — AT ——— ME M
60. ; : . "A...'Oto.. | i ¢ o

:'W

50. , - ke T[fceea,,

T L]
- o ®es,,

80.

p

40, -
30. 1

20.
0.

o l
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0

' Memory Cycle Time

Fig. 7. ACTIVE Time versus Memory Speed

90.

.............,o.o e @ 00h o 0o 000ses o0 cofo e 0 0 9 00 0 e
Fid

50 ns

=D ¢ WD & =

s . qEn 0 GHNISD ¢ SR ¢ Shuws ¢ . . ¢ Gmman o GNUEe o Gmmew
- - 200 ns

———
1000 ns

2.0 4.0 6.0 - 8.0
Number of Instructions (x 1000) per I/0 request
Fig. 8. C P U Utilization versus 1/0 Frequency

A COMPARISON OF METHODS FOR SIMULATING COMPUTER BUS ARCHITECTURES 359

REFERENCES

Birtwistle, G. M. (1973), SIMULA BEGIN,
Philadelphia, Auerbuck PubTishers.

Birtwistle, G. M. (1981). A SYSTEM OF DISCRETE
EVENT MODELLING ON SIMULA to be published.

Liebowitz, B. H., Multiple Processor Minicomputer
System, COMPUTER DESIGN, Oct. 1978, pp 87-95.

Schriber, T. J. (1974), SIMULATION USING GPSS,
Jdohn Wiley & Sops, New York.

