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Abstract

This paper describes approximations for
nonstationary queueing models. Explicit

consideration of the time-dependent vector of
probabilities associated with -<complex queueing
systems requires numerical dintegration of the
Chapman-Kolmogorov differential difference
equations. The number of differential equations
increases nonlinearly as the complexity of the
system increases, for example priority or  network
systems. The research methods described in this
paper are approximation approaches to reduce the
number of differential equations numerically
integrated, or simulated, necessary to represent
complex stochastic models to a small and possibly
constant number.

INTRODUCTION

Continuous simulation is a powerful tool in
analyzing time-dependent behavior of complex
systems. In continuous simulations, transient and
time-varying behavior of systems are described by
numerically dintegrating sets of difference,
differential or differential difference equations,
Forrester popularized the use of continuous
simulation with his work on industrial dynamics,
urban dynamics, principles of systems, and world
dynamics L[Forrester, 4-7l. Representation of
delays in continuous simulation Llanguages §Hch as
DYNAMO, GASPIV or SLAM_, makes use of n~ order
exponential delays. An n~ order delay process is
equivalent to the time spent in a stochastic
service system which has a time-dependent arrival
rate, dinfinite number of servers and independent
service times from the same Erlang distribution.
In order to represent nonstationary systems that

allow queueing, in a continuous simulation,
numerical . integration of the differential
difference equations describing the time~dependent
state probabilities is required. These

differential difference equations describing time-
dependent state probabilities are called the
Kolmogorov-forward equations [Giffin, 81. Kolesar,
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Rider, Crabill and Walker made use of Linear

programming and numerical jntegration of the
KoLmogorov-foruard equations for a M/M/c queueing
system in a Large model of scheduling police patrol
cars to meet time-varying demands [Kolesar, et al.,
103. One. serious Limitation in the study mentioned
is that no priority structure in dispatching the
calls is made. The authors$ point out that modeling
priority calls is possible but the complexity of
computation would greatly increase.

Hartman, Koopman, Giffin, Walters and Bundy
have all made use of Runge-Kutta integration of
Kolmogorov-forward equations to study aspects of
air traffic control C[Hartman, 91, L[Giffin, 8],
C8undy, 11, Rothkopf and 'Oren developed an
approx1mat1on for M/M/c nonstationary queues to
study centralized photocopy centers [Rothkopf, 171.
Rothkopf and Oren noted as did Kolesar, et al.,
that the lack of complexity in the model such as
priorities, was an important research issue.

Actual demand in real service systems such as
air traffic, telephone traffic and data-
communication network traffic can reasonably be
expected to exhibit nonstationary patterns.
Typically demand for on-line card-catalog computer
equipment experiences three peak periods of use per
day: mid-morning, early afternoon and early
evening [Knox, Miller, 121. Thus, steady state
analytic models of a nationwide computer
bibliographic utility service that accepted demands
from several different time zones of the country
and had dynamically distributed processing
capability, would be of Llimited use to network
ptanners and management, The sudden spike in the
demand curve for telephone &signal 'switching and
long Lline use and the corresponding degradation of
the overall long distance system resulting from
Media Stimulated Calling (MSC) such as the demand
that occurred immediately following the 1980
Presidential debate is an example of the importance
transient analysis of stochastic service systems
CLaPaduta, 13]. Continuous simulation models of
nonstationary systems, such as those mentioned
above, require explicit representation of gueues.

The curse of dimensionality Limits the utility
of numerical dntegration or continuous simulation
of the Kolmogorov-forward equations, to systems
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relatively small number of possible
system states. The number of states in stochastic
service systems increases rapjdly and in a
nontinear manner for increasingly complex systems.
As the complexity of the system 1increases or
equivalently as the dimension of . the vector
describing the state of the system iricreases, the
utility of numerical methods decreases.

The research. methods described in this. paper
are approximation approaches to reduce the number
of differential equations numerically integrated or
simulated, necessary to represent complex
stochastic models to a small and possibly constant
number. Clark points out, approx1mat1on techniques
are needed to reduce the number of d1fferent1al
equations integrated numerically to allow expL1c1t
consideration of queueing delays 4in continuous
simulation [clark, 31. When complex stochastic
models can be approximated by a relatively few
differential equations, then numerical integration
of the reduced set of equations is easily
accomplished and continuous simulation models of
Large complex systems that idnclude as components
queueing systems, is feasible. ’

"Two methods of reducing the number
differential equations will be investigated.
first method is a_ moment.. matching
distribution approach. The second method is to
approximate the departure processes from a node ‘in
a queueing system with a time-dependent Poisson
.process. Two important classes of complex
nonstationary queueing models that are represented
by multidimensional probability density functions
will be dnvestigated. The first is priority
queueing and the second is a set of special cases
of queueing network systems that have two nodes
called tandem systems. Other compléx queueing
models are not considered., . However, the
approximation approaches presented in this research
and combinations of these approaches may prove to
be wuseful 1in the analysis of other complex
nonstationary systems.

The standard approach for representing the
transient and nonstationary behavior of M/M/1/K
queueing systems is to numerically dintegrate
time differential difference equations representing
the probabilities of being in each of the system
states. The time derivatives are called the
Kolmogorov-forward equations and are frequently
used to analyze time~varying behavior of queues
[Giffin, 8], CHartman, 91, [Koopman, 111. For an
M/M/1/K nonstatijonary system the Kélmogorov-forward
equations are
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N(t) = 1 indicates that the number of %)
entities .in the system at time
t is i
PriN(t)=1i) = Probability that N(t)=i (53
P =1 . . .
ﬂilﬁ%ﬁfl_ll.= time derivative of PriN(t)=1i) 6)
A(t) = nonstationary mean Poisson arrival
rate at time t
M(t) = nonstationary mean. service rate of
exponentially distributed service
times at time t
Equations (1) through (3) are very smooth
differential-difference equations that can be

numerically integrated quite accurately [Whitlock,
193, foOlson, 151, ([Taaffe, 181. To represent a
system with capacity K, K+ differential equations
need to be numerically integrated, so a large model
which has several independent M/M/1/K nonstationary

gueues as  components can require extensive
computationat resources. Further, for even
moderate size models which have interacting

nonstat1onary queues as components, the state space
increases nonlinearly causing great dimensional
problems. The motivation for producing an
approximation for nonstationary M/M/1/K queues is
to reduce the computational resources requirements
for evaluating the queue size distribution through
time with Little Loss of accuracy.

In characterizing the behavior of a queueing
system, the values of the first 'moment of the
distribution of the number of entities in the
system is important. To represent the time-varying
behavior of the first moment, one approach is to
numerically dintegrate the differential difference
equations of the probabilities of being in each of
the possible system states then compute the moment,
when desired, by multiplying each probability by
the appropriate index and summing, i.e.,
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In'order to compute sums (7) and (8), of course the
Kolmogorov—-forward equations still need to be
numerically integrated. If K is large, the number
of arithmetic operations may be large enough to
cause significant round-off errors. Not only do
all K+ differential equations need to be
numerically evaluated but also the two sums, (7)
and (8), have to be evaluated, each of which has
K+1 sumands. Another approach 4is to derive the
moment—-differential equations directly and
numerically integrate them rather than numerically
integrating all of the Kolmogorov-forward equations
and then summing.
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Thus, to numerically -dntegrate the first moment
differential equation only the probability of the
system being at capacity and the probability of the
system being idle need to be available. If somehow
these two probabilities are available at time t
then the first moment can be represented as a
function of time and the K-1 probabilities need not
be dintegrated. Similarly for the second moment
differential equation:
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Once again the second moment differential equation
can be computed using only the value of the arrival
rate A(t), the service ratée u(t), the first moment
E(N(t)) and the probabilities of a full system
Pr(N(t)=K) and empty system Pr(N(t)=0). Thus, if
somehow the values for Pr(N(t)=0) and PriN(t)=K)
were available for all t, then two differential
equations would be all that is needed to get the
time~varying values of the mean and variance of the
number in the system. Numerical accuracy is also
necessarily less of a concern in evaluating moment
differential equations since significantly fewer
arithmetic operations are required, e.g., only two
differential equations would be numerically
evaluated instead of K+1 differential equations and
two summations with K+1 terms each.

Rider [16], Chang [2] and Clark [3]
numerically integrated the first moment .
differential equation for an M/M/1 queue and
approximated Pr(N(t)=0), the only probability
needed, by various methods. Rothkopf and Oren [17]

also approximated nonstationary queues by
numerically integrating moment differential
equations. Rothkopf and Oren's approximation was

the first to use a probability distribution as a
surrogate for the actual and unknown distribution.
The negative binomial served as a surrogate from
the Rothkopf' and Oren approximation. Clark [31
extended the approximation procedure of Rothkopf
and Oren and eliminated the need for correction
factors for queues with multiple servers. Clark
used the Polya-Eggenberger distribution as the
surrogate distribution. For a review of a
comparison of the negative-binomial wversus the
Polya-Eggenberger as a surrogate, see Clark [3].

The Surnogaté Distribution Approximation Approach

If the distributional form of Pr(N(t)=7) were
known and it was a two parameter distribution, then
computing Pri(N=0,t)> and Pr(N=K,t) could be simple
given the first two moments. Of course, the
problem is that the functional form of Pr(N{t)=1)
is not known. Even if the functional form of
Pr(N(t)=1i) were known, only two probabilities are
actually wused to compute the moment differential
equations. Because knowing the distributional form
of PriN(t)=i) would make things much -easier,
assuming it is a two parameter distribution, one
approximation method is to, use a surrogate
distribution for the unknown distribution. Even if
the form of the surrogate distribution does not
change with time, the surrogate probabilities do
change with time since the moments change with
time, thus the surrogate distribution parameters
are also changing. The surrogate distribution
moment-matching approach 1is the first method
discussed in this paper and will henceforth be
referred to as the surrogate distribution
approximation. In outline the simplest version of
the surrogate distribution approximation consists
of five steps:

1)  Assume E(N(t)) and E(Nz(t)) are known.

2) Assume Pri{N(t)=1) 1is approximated by
Pr(X=i) where X is a random variable with
an associated two parameter distribution
called the surrogate.

11
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3) S&Lve for the surrogate disEribution
parameters given E(N(t)) and E(N (1)),
2
4) Calculatem dEN (B) using

PraN(t)=0) andtPrN()=K) as Hpproximated
by Pr(X=0) and Pr(X=K).

5) Calculate E(NCt#At)) and E(Nz(ttﬂmf) by
numerical integration.

Step one is a natural result of an iterative use of
the approximation procedure. The  surrogate
distribution approximation is a heuristic procedure
and the reason is that the surrogate distribution
at any time will have the correct first two moments
but nothing can be sajd a priori about the accuracy

of any of the surrogate probabilities emanating
from the surrogate distribution. As demonstrated
earlier, only two probabilities from the surrogate

distribution of Pr(N(t)=1) need to be accurate if
the surrogate approach were to ‘be used for the
M/M/1/K, d.e., Pr(N(t)=0) and Pr(N(t)=K). Step
three .implies that the choice of surrogate, in
part, must be based on the computability of the
distribution's parameters given the first two

moments. A distribution whose parfameters are
difficult to compute would not serve as an
efficient surrogate. Step four merely calculates

the moment-differential equations based .on their
.current value, the current mean arrival and service
rates and, in the case of the M/M/1/K, two
probabilities from the surrogate distribution. By
numerical integration, as Step five indicates, the
first two moments are computed for time t#/it. At
time t+/\, the procedure is repeated. With each
increment in “time, a new set of surrogate
probabilities are used to compute the derivatives

for the momeénts which in turn are used to compute
the next set of moments and  thus surrogate
distribution parameters. The surrogate

distribution approximation has been applied to the
M/M/c, M/M/c/k, M/M/1/k 2 priority nonpre-emptive
models and some special cases of the M/M/1/k p-

priority models. Results from all of these
applications indicate excellent accuracy and
robustness. Detailed description of the accuracy
of the approximations are available in Ctark [E3]
and Taaffe [181.
Tandem Queueing Systems
The second type of queueing system for which

approximations will be discussed in this paper are
several special cases of the nonstationary tandem
queueing system. The following is a diagram of the
general tandem considered in this paper.
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Ai(t) = mean rate of the timé—dependent
Poisson external arrival process
to node i at time t.

“i(t) = mean rate of the time-dependent
service process at node
at time t.

0.(t) = mean rate of the departure process

i : .
from node j at time t.

Ki = capacity of node i.

PF(t) = probability at time t of an entity
departing two returning to node
node one, i.e., the probability
of feedback at time t.

PE(t) = probability at time t of an entity

one and exiting the departing node
one system,
and

The dimension of the state space is two

the number of states the system can realize is
(K,+1) (K,+1). The joint probability of finding
the systgm in any one of the possible states is

represented by

PriN CtI=J)

s (=i, N

2

where N.(t) is the number of entities at node i at

time t. .

Clearly, if the queueing node capacities are
Llarge then the number of states and thus the number
of differential equations gets large quickly. In
general, in a N node network with each nodﬁ having
capacity k the number of states is (k+1)". The
approach taken in the tandem network approximations
is to analyze the marginal Chapman—Kolmogorov
equations and make approximations to reduce the -
number of differential equations to (K1+1)+(K2+1)
rather than the product. Further, combining the
surrogate approximation outlined above with the
tandem approximation the number of differential
equations is reduced to a small constant number.

In this class of approximation a time-
dependent surrogate distribution s used not to



but to describe
from each of the

describe the number in the queue
the time between departures
queueing nodes in the network.

The approximation strategy used consisted of
making a heuristic assumption about the functional
form of a few joint probabilities which result in
departure processes that are time—~dependent Poisson
processes (TDPP). For example: for node 1, which
has a component of its input process a fraction of
the output process of node 2, consider the joint
probability

PriN (t)=i,N2(t)=0)

1

number of entities at node 1
at time t

N (D)

"

number of entities at node 2
at time t

Nz(t)

to be the product of its marginal probabilities,

.4,
Pr(N1(t)=i,N2(t)=0> = Pr(N1(t)=i)Pr(N2(t)=0)

If this assumption is made then the output process
from node two and thus a component of the input
process at node one, is TDPP [Taaffe, 181. The
approximating assumption described above does not
assert that node one and node two queue size random
variables are stochastically independent, rather it
is an assumption about the functional form of a few
joint probabilities.

The performance of the approximation for
several special cases as well as the general tandem

queueing system are analyzed and presented in
detail in Taaffe C181.
summary

of the approximations
discussed above are encouraging. The surrogate
distribution approximation for priority queues is
robust and quite accurate. The strengths and
weaknesses of the tandem approximation are apparent
from the empirical resutts. Future work combining
the two types of approximations should prove useful
in  approximating more  complex nonstationary
systems.

The empirical results
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