SIMULATING LOW DEMAND ASSET AVAILABILITY IN BASE SUPPLY WITH Q-GERT

Abstract

Many widely used analytic inventory models in-—
clude the assumption that item lead times are ran-
domly and independently distributed about a station-
ary mean value. The models use a generalized form
of Palm's Theorem to compute expected item back-
orders as a measure of system performance. In ac-
tual practice, most large scale inventory systems
do not conform to this assumption; demands which
create backorders lead to expedited item delivery
times. This research investigates the significance
of the errors which are generated when the analytic
model is used to represent such an inventory system.
The methodology involved simulating the inventory
system with Pritsker's Q-GERT.

INTRODUCTION

A number of inventory models have been devel-
oped which attempt to allocate an investment budget
among a set of inventory items so as to optimize
some measure of inventory system performance (5,7).
Generally, these models measure system performance
in terms of backorders, that is, the time-weighted
average number of outstanding shortages. The theo-
retic models used to compute the estimate usually
include the assumption that the resupply time (or
lead time) for an item is a random variable which
is independently distributed about a stationary
mean, In practical systems, this assumption is fre-
quently invalid., In many such systems, item demands
which are backorders are handled o6n an expedited
basis, greatly reducing the duration of the back-
order., This complicating factor is extfremely diffi-
cult to handle analytically. The purpose of this
research is to simulate the performance of an in~
ventory system with expedited backorders to deter-
mine whether the assumptions of the theoretic models
lead to significant errors in estimating item back-
orders, - '

BACKGROUND

Tt can be shown that an optimal inventory pol-
icy for low-demand, high cost items is one—for—one
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replacement, that is, an (S, S-1) inventory policy
(4). The expected backorders associated with an in-
ventory level of size S in such a system can be es-
timated if the following assumptions are made:

1. Demand is an independent, stationary Pois-—
son process, where the demand rate is A units per
unit time,

2. Inventory is replenished on a one—for-one
basis, with no delaying or grouping of orders.

3, Ttem lead time, or resupply time, is a ran-
dom variable which is independently distributed
about a stationary mean, say T time units.

4, All demands which occur when stock is zero
are backordered until replenishment stock arrives,

Under these conditions it can be shown that the
number of items in resupply, or the number of out-
standing replenishment orders, at a random point in
time is a random variable which is Poisson distri-
buted with a mean of AtT. This is an extension of
Palm's Theorem (2). It follows, then, that the
probability of X outstanding replenishment orders
is:

p(EAD) = e M oo¥
e " Om”
X

The expected number of backorders, or time-weighted
average number of shortages, can be computed as:

©

E(B) = X
X=5+1

(X-8)p(X|A1)

This logic forms the basis for two inventory algori-
thms in wide use in the United States Air Force,
METRIC (Multi-Echelon Technique for Recoverable Item
Control), (7), and Mod-METRIC (5), as well as many
other stockage models and studies; for example, that
of Duke and Elmore (3).

PROBLEM STATEMENT

This research was triggered by an application
of the inventory theoretic model to inventories of
spare parts in the United States Air Force. In this
system, item replenishment orders which are intended
to replenish stock are handled on a routine basis
and normally have lead times of 20 to 30 days. How-
ever, if the replenishment item is needed to satisfy
a backorder, that is, the spare part is missing from
an aircraft or missile, then the replenishment order



Low Demand (continued)

is given priority and is expedited. An expedited
resupply time would last from 5 to 10 days. The
purpose of expediting, quite obviously, is to reduce
the duration of backorders. An inventory model that
ignores expediting which in fact takes place will
overestimate the expected number of backorders, that
is, it will underestimate system performance.

Since these theoretic estimates of item back-
orders are, in fact, used to allocate an investment
budget, it is important to determine whether the
error introduced in the model by this simplifying
assumption is significant or trivial. The approach
of this research was to simulate the performance of
an inventory system in which backorders are expe-
dited and to compare the simulation results with
those predicted by the theoretic model. It is clear
that the theoretic model will overestimate item back-
orders, the question is, how badly?

SYSTEM DESCRIPTION

This simulation describes the flow of a single
item, two—echelon inventory system consisting of a
base supply which acts as a distributor to the con-~
sumer and a depot (or central supply) which fills
orders from base supply. A one-for-one inventory
reorder policy is used. For every demand placed
upon base supply by the consumer, an order for a re-
placement is submitted to the depot. If base supply
has stock on hand when an order is received, then
the replacement order is satisfied using the routine
resupply time. If the part is not on hand, result-
ing in a backorder, then the expedient resupply time
is used. It is assumed that the depot always has
always has stock on hand. The amount of on-hand
stock authorized for base supply at any one time is
set at one unit. The critical variable under con-
sideration is the number of backorders experienced
by the system. )

Demands and resupply times are considered
stochastic, A simple Poisson probability distri-
bution is used to predict the probability of fail-
ures (demands). Thus, the time between demands is
represented by an exponential probability distri-—
bution. Five values are used for time between de-
mands of integer values between one and five units
per year. Resupply time is represented by two nor-
mal probability distributions representing the ex~—
pedited and routine times. The mean expedited re-
supply time is ten days, and the mean routine re-
supply is thirty days. These values reflect actual
trends within the United States Air Force. The dif-
ference between the means is created by established
physical distribution standards reflecting an or-
der's criticality.

SIMULATION MODEL

A Q-GERT model used to analyze the system is
presented in Figure 1, It may be divided into three
sections. The first section initiates the demand
and. assigns an attribute according to the status of
the base supply inventory. The second section gen-—
erates the order to the depot and its supporting
paperwork, The final section assembles the property
and paperwork. '

64

The first section is composed of nodes ten and
eleven., Node ten represents the consumer functionm,
where activity one simulates the initiation of de~-
mands. The user function at node eleven assigns a
value to attribute one based upon the amount of in-
ventory on hand at base supply (node fifteen). If
an asset is on hand, then the attribute is assigned
the value bne, If there are no assets on hand, then
the attribute is assigned the value two.

Activity three begins the second section by re-
laying the transaction to node twelve where deter—
ministic branching sends the transaction to node
five (order queue) and node thirteen. The condi-
tional, take-first branching at node thirteen com-
pares attribute one's value to two constant stan-—
dards. If the attribute's value equals one, the
routine resupply time (activity six) is selected.

If the attribute's value equals two, the expedited
resupply time (activity seven) is chosen.

The final section of the Q-GERT model assem-
bles the paperwork with the property (node nine),
and forwards the tramsaction to node twenty. This
final process represents delivering the requested
part to maintenance, The computer program for the
Q-GERT NETWORK is presented in Figure 2.

Figure 2
Q-GERT PROGRAM

FUNCTION UF(IFN) i
COMMON/QVAR/NDE ,NFTBU(100) ,NREL(100) ,NRELP(100),
+NRUN,NRUNS,NTC(100) ,PARAM(100,4) ,TBEG, TNOW

GO TO (1),IFN

UF=1,0

IF (NREL(15).GT.Q) UF=1
IF (NREL(15).EQ.1) UF=2
RETURN

END

*EOR :
GEN, PANKOPETE ,DATA,3,2,1982,,1,100,,100,,,1%
SOU,1.0/SOURCE,0,1,D,M*
REG,11/USERFUNC,1,1,D*
REG,12/DIVIDER,1,1,D*

QUE, 5/0RDER-Q;0, ,D,F, (10)9%
QUE,15/ASSET-Q,1,,D;F,(10)9%
SEL,9,ASM, ,,,5,15%
SIN,20/SINK,1,1,D,T#
REG,13/COND,1,1,F*
REG,14/TEST,1,1,F*
VAS,11,1,U0F,1%
ACT,10,11,,,2%
ACT,10,10,EX,1,1*
ACT,11,12,,,3*

ACT,12,5,,,4%

ACT,12,13,,,5%
ACT,13,14,80,2,6,,,A2,EQ.1*
ACT,14,15,C0,0.0%
ACT,13,15,N0,3,7,,,A2.EQ.2%
ACT,9,20,C0,0.01,8,1%
PAR,1,365,0,1460%
PAR,2,30,,10.,50,,10.*%
PAR,3,10.,6.,14,,2.*%

FIN®

A transaction in Q-node 5 represents a demand
which can not be satisfied because no property is




Figure 1

Q-QERT NETWORK
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Table 1
THEORETICAL AND SIMULATED NUMBER OF BACKORDERS
A Simulated
(Orders Per Year) Theoretic Average Std, Exrror
1/365 0.00329 0.0019 0,0001
2/365 0,01280 0.0066 Q.OOOZ
3/365 '0.02805 0.0139 0,0003
4/365 0.04858 '0.0235 0.0005
5/365 0.07690 0.0347 0.0007
Table 2
THEORETICAL AND SIMULATED NUMBER OF BACKORDERS
(Sensitivity Analysis)
A Simulated
(Orders Per Year) Theoretic Average Std. Erroxn
1/730 0,00083 0.0005 ‘0,0000
171095 0.00037 0.0002 0.0000
1/1460 0.00021 0.0001

.0.0000
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avallable to the base; that ls, the transactlon is
a’ backorder, The time-weighted average number of
transactions in Q-node 5 therefore represents the
expected number of backorders in the system,

CONCLUSION

The assumption of a routine resupply time, as
in' the theoretic model, does not accurately repre-—

¢ sent the supply availability of a low demand time.

MODEL VALIDATION

In all tested cases, the theoretic model consis-

' tently provided a conservative estimate of the de-

To validate the Q-GERT model for the system
under study, the simulation results, using a moder-
ate demand rate, were compared to the theoretical -
model, assuming that the theoretical model's asstimp~
tions were valid. The user function (node’1l) were
modified to always set the attribute's value to one
to correspond to the assumptlon of the theoretical
model that routine resupply time satisfactorily wep-
résents the availability of low-demand assets.,
Know1ng that the stock level was fixed at one and
resupply time was ten days,. the mean number of fail-
ures (demand) was set. at ten per year, The average
number of- backorders from thirty replications was
.0353 backorders per year, with a standard deviation.

Of .0018, The theoretical expected backorder for- ‘«-1.‘_
mula was used to confirm this result: h !
L =AT X
E(B) = I Q&EQS_AT.SAIQ..= ,034231 )
X. . 2,
X=s+1 )
A 95 percent confidence interval about the saﬁple ;
meéan generated by the simulation program, 0.0317- 3

0.0389, lncluded the theoretical number of back- A
orders. This. validated the Q-GERT network's opera-
tlon in relation to the theoretical model,

v . - DISCUSSION

One hundred runs of the simulation program,
each consisting of 100 demands were performed for 4
each of the five values of the mean frequency of ’
annual demand undet consideration. The simulation
output is summarized in Table 1. The data includes
the theoretical expected backorder value, the simu- 5
lation's average backorder value, and the standard :
error of the estimate of the simulation's average
backorder value, A oneé-tailed large sample test of
an hypothesis about a mean was performed on the data 6
for each mean frequency of annual demand. The one *
sample test of an hypothesis about a mean was used
in this study sincé the theoretical backorder value
could not be considered a sample. Every test indi- 7
cated, at the 95 percent confidence level, that a ‘
significant difference existed between the theoretl—
cal and the simulation means.

As can be seen from Table 1, as the demand fre-—
quency increases within the range of one and five
orders per year, the difference between the theoreti-
cal and the simulation backorder means increased.

To test the simulation's sensitivity to demand fre-
quencies lower than the range of interest, three ..
additional mean demand values wete tested (unit/730
days, 1 unit/1095 days and 1 unit/1460 days).

Table 2 lists the résulting theorétical and simulated
number of backorders for the three additional mean
demand values with all other simulation imputs un-
changed. Since the standard errors of the average
number of backorders was translated to below .0000

in all cases, no hypothesis test was performed.
However, it can be supggested from direct observation
that the divergence persists,
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tual supply availability.
average number of backorders that would be experi-
enced by the system.

It overestimated the

)

The significant difference between the models
was strongly supported by the large sampe hypothesis °
test results, and subsequent sensitivity analysis,
The simulation results indicate that many widely
used inventory models should b reevaluated and
specifically modified for use with low demand items
when backorders are expedited,
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