A COMPUTER SYSTEMS SIMULATOR

Abstract

We discuss the structure and content of a com-—
puter systems simulator being written in Demos, a
Simula extension. The simulator is intended to
bridge the gap between out and out performance sim—
ulators and simulators for software design. It
provides skeleton descriptions of hardware compo~
nents, and job profiles which can be tailored to
particular applications. Use of the simulator is
illustrated by examples of disk definitions, seg-
mentation and paging.

INTRODUCTION

Simulation models of computer systems have
been used to advantage for many years now. With
recent advantages in queueing theory, many rough
and ready performance issues are most conveniently
undertaken using a queueing network package rather
than a simulator. At the other end of the problem
spectrum, simulation has been used to develop algo-
rithms for software processes in real time systems,
local area networks and long haul networks.

Two spectacular successes were scored by
Belsries [1] and Salih [2]. Belsnes simulated the
link level and packet level protocols for X25 in
Simula. Since the network node hardware was a
NORD 10 mini which supports Simula, and Simula sup-
ports the notion of a process, it proved possible
to use the simulation code for the actual implemen-
tation. Salih's work, also Simula based, mapped
existing real time software into a detailed simula-
tion with a Simula process corresponding to each
real time process. Exact instruction timings were
built into the model and Salih came up with an im-
proved design that was not only 15% faster in the
most critical region, but also more 'correct' (a
possible deadlock was detected).

In practise, 'software' simulators are too
slow running to be used as they stand to study per-
formance issues. This is because all components,

*
This work was supported by a grant from NSERC.

proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0329 $00.75 © 1982 IEEE

329

Ken Barker* and Graham Birtwistle¥®
Computer Science Department
University of Calgary

even relatively unimportant ones, are presented in
full detail. TInstead they, together with proces-
ses with fine grains of time, should be broad
brushed out.

In this paper we discuss the structure and
content of a simulator we are developing which is
intended to (at least partially) overcome this
difficulty. It provides a framework which can be
used almost as it stands to study performance is-
sues. But its main purpose is to allow for the
insertion of detailed algorithmic descriptions
within a fast running framework.

In our applications so far, we have mainly
been interested in studying the impact of various
memory management policies on job throughput. 1In
our experiments, job profiles have reamined un-
changed whilst we have experimented with various
underlying architectures: partitioned, segmented
and paged, with or without virtual memory. Our
outline of the simulator is illustrated with seg-
ments of code taken from disk scheduling, segmen-—
tation and paging models. The paging model is
being used for experimentation with strategies
for overcoming thrashing in a multi-programming
environment. TIndeed, it was this study which
prompted us to work backwards and design the
simulator!

The work most closely related to our simula-
tor is Unger's Oasis [3], which is now a Demos
[4,5] extension.

However, Oasis is owiented towards system
kernel process descriptions and hence Oasis pro-
grams require much detail. But there is a link,
and we felt that our simulator ought to have a
related name; it has been modestly christened
'Green' (short for Greenpiece).

STRUCTURE OF GREEN

Green has been written as an extension to
Demos, itself a Simula based package. Demos
builds in the simulation clock, event list sche-
duling, various synchronisations, and several data

A<Compute: Systems Simulator (continued)

collection, random number, tracing and reporting
routines. Two versions of Green will be made a-
vailable. A debug version which uses standard
Demos trace and reporting facilities. Once the
model has been accepted, the unchanged source
should be recompiled under the P_Green package
which ignores traces and overrides the Demos data
collection standards. Instead, separate files are
created for each stream, and items are individually
written~out for later analysis in the manner out-
lined in [6].

Green provides tools for the class of compu-
ter systems with an arbitrary number of io devices,
and a block of memory shared by several identical
cpu's. The simple program listed below represents
a hardware configuration of two cpu's, eight disk
packs accessed via the same channel and with twenty
terminals logged on. Each user thinks for a while
and then submits a request. Each request doops m
times and each loop contains a cpu request fol-
lowed by an io request to a randomly chosen disk.
The user then repeats this work cycle.

(1) 'BEGIN EXTERNAL CLASS GREEN;

(2) GREEN
(3) BEGIN
(4) INTEGER N;
(5) REF(I0_GROUP)DISK;
(6) REF (RDIST) THINK;
N REF (IDIST)BURST, LOOPS, PACK;
(8) JOB CLASS USER;
(9)- - BEGIN
a0 INTEGER M, K;
1) HOLD(THINK.SAMPLE) ;
(12) M := LOOPS.SAMPLE;
3y FOR K := 1 STEP 1 UNTIL M DO
(14) BEGIN -
(15) EXECUTE (BURST . SAMPLE) 5
(16) DISK.DOIO(PACK.SAMPLE);
Qan END;
(18) REPEAT;
(19) END#***[JSER*¥% 5
(20) ' DISK :- NEW IO GROUP("DISK", 8,
NEW UNIFORM ("'U', 0.000,
. 0.075), 0.010);
(21) THINK :- NEW NEGEXP("THINK", 0.05);
(22) BURST :- NEW RANDINT ("BURST", 10000,
. 50000) ;
23) LOOPS :- NEW RANDINT("LOOPS/REQ", 1, 10);
(24) PAGK :- NEW RANDINT('PACK", 1, 8);
(25) CPU :- NEW PROCESSOR("CPU", 0.0000001);
(26) FOR N := 1 STEP 1 UNTIL. 20 DO
27) NEW USER("USER") .SCHEDULE (NOW) ;
(28) RUN_SIMULATION FOR(1000.0);
(29) END;
(30) END;

Line 1 declares our intended use of Green: its
contents become available to the block stretching-
over lines 3-29 by its occurrence as block prefix
on line 2. In lines 4-7 we declare the static
quantity names used in the program; N is a loop

counter, DISK names the 8 io devices. THINK, LOOPS,

BURST, and PACK are names on distributions used to
simulate the user think time, number of cpu visits
per request, number of instructions executed in
the current burst, and the particular disk for

330

which this io request is intended.

Lines 8-19 detail the class of jobs we are
simulating. Each user thinks for a while (line
11) and then submits a request (lines 12-17).
EXECUTE simulates both the queueing for and com-
pletion of a cpu burst. The DOIO command simu-—
lates queueing for and completion of an I0 request
on one of the eight DISKS. The REPEAT command .
causes the class actions to be repedted from line
11.

In lines 20~25 we initalise the static quan-
tities in the model and in lines 26-~27 create 20
interactive jobs. The simulation run length is
fixed in line 28.

When the simulation is over, a report on cpu
and device usage is automatically presented
(should the user be in debug mode).

Green supplies primitives for single or
grouped io devices. Grouped devices share the
same channel. Where an io can reasonably be
modelled by a wait followed by a transfer, use
the built-in definition below:

RES CLASS IO_PEVICE(LATENCY, TRANSFER) ;
REF (RDIST)LATENCY; REAL TRANSFER;
BEGIN
PROCEDURE DOIO;
BEGIN
ACQUIRE(1);
HOLD (LATENCY . SAMPLE+TRANSFER) ;
RELEASE(1);
END***DOTO%%%
IF LATENCY == NONE THEN errors
IF TRANSFER <= 0.0 THEN error;
END**XTQ_DEVICE**#;

which represents an io dgvice which services re-
quests in priority order (FCFS if priorities are
all the same). .

For clustered disks on the same channel, use
th¢~bui1t in class IO_GROUP whose outline is:

RES CLASS IO _GROUP(N, MOVE, LATENCY,
TRANSFER) ;
INTEGER N; REF(RDIST)MOVE, LATENCY; REAL
TRANSFER;
BEGIN
PROCEDURE DOIO(PACK); INTEGER PACK;
BEGIN
D[PACK].ACQUIRE(1);
ACQUIRE(1); ! channel;
RELEASE(1); ’
HOLD (MOVE . SAMPLE) ;
ACQUIRE(1); ! channel againg
HOLD (LATENCY . SAMPLE+TRANSFER) ;
RELEASE(1);
D[PACK].RELEASE(L);
END***DOTO*%*
REF(RES)ARRAY Df1:8];
END#%*I0_GROUP**%;

* Typical initialisation and.call sequences
were shown the program. Should neither of these
built-in patterns suffice, then the user can de-
fine his own io disk allocator. For example,

here is an allocator patterned on the SCAN algor-
ithm (the logic and code are taken from [7])

RES CLASS SCAN(LATENCY, TRANSFER NR CYLS);
REF (QDIST)LATENCY;
REAL TRANSFER; INTEGER NR_pYLs;
VIRTUAL: PROCEDURE HEADMOVE;
BEGIN
INTEGER HEAD POS;
BOOLEAN DIRECTION, BUSY;
REF (CONDITION)UP, DOWNj

PROCEDURE DOIO(DEST); INTEGER DEST;
BEGIN
IF BUSY THEN
BEGIN
IF HEAD POS < DEST OR
HEAD POS = DEST AND UP
THEN UPQ.WAIT(DEST)
ELSE DOWNQ.WAIT(-DEST);
END3
BUSY := TRUE; HEADPOS := DEST;
HOLD'(HEADMOVE+HLATENCY . SAMPLE+TRANSFER) 3
BUSY := FALSE;
IF UP THEN
BEGIN
IF UPQ.LENGTH > O THEN UPQ SIGNAL ELSE
BEGIN
UP := FALSE;
DOWNQ.SIGNAL;
END;
END ELSE
BEGIN
IF DOWNQ.LENGTH > O THEN DOWNQ.SIGNAL
ELSE
‘BEGIN
UP := TRUE;
UPQ.SIGNAL;
END;
.END;
END*%XDOTO**%
END##%SCAN#*%

The exact definition of HEADMOVE from HEAD_POS
to DEST has been left open (it has a virtual speci-
fication). The definition uses the Green CONDITION
primitive in which jobs can be blocked queued ac-
cording to a priority which is passed as a para-
meter in the calls on WAIT. Dormant processes are
wakened by calls on SIGNAL.

Job patterns, like io devices are usually
straightforward. Their bodies reflect the routings
of that class of job as it moves from station to
station with DOIO's calls on io devices and EXECUTE
bursts on a cpu. When more detail is required, we
drop .from Green into the Simula host. As an exam-
ple, the job profile below represents a class of
jobs in a non-virtual memory segmented system and
displays a 'get_segment' algorithm. Free segments
are kept in SEGQ ordered according to their start
address:

JOB CLASS JOB_SEGMENT;
BEGIN REF(SEGMENT)SEG;
PROCEDURE LOAD;

BEGIN
REF (SEGMENT) S; BOOLEAN FOUND,
RETRY: -
S :~ S.FIRST;" ! first free segment;

WHILE(S =/= NONE AND NOT FOUND) DO

BEGIN
IF S.LENGTH > SIZE THEN
BEGIN
SEG :- NEW SEGMENTS(S.START, SIZE);
S.START := S.START+SIZE
S.LENGTH := S.LENGTH-SIZE;
FOUND := TRUE
END ELSE
IF S.LENGTH =
BEGIN
SEG :— S;
SEG.QOUT;
FOUND := TRUE;
END ELSE S :- S.SUC;
END;
IF NOT FOUND THEN
BEGIN
BLOCKED .WAIT;
GOTO RETRY
END;
SEG_FOUND:
PRIORITY := 13

SIZE THEN

! high priority for new
job;
DISK_E.DOIO(SIZE);! read in the segment;
PRIORITY := O3
END#%XLOAD#*%% 3

PROCEDURE FREE...,.;

LOAD;
FOR K := 1 STEP 1 UNTIL n DO
BEGIN
EXECUTE(burst) 3
DISK.DOIO(n);
END;
FREE;
END*#%JOB_SEGMENT###;

The final built-in device definition is that
of a cpu. In our definition we have striven for
ease of use and built-in many options - time slic—
ing, paging, segmentation - not all of which will
be wanted in any one model. The options are sup-
plied with default definitions which ensure that
unless they are overridden by the user, the (un-
represented) characteristics will not manifest
themselves. The basic framework is:

ENTITY CLASS PROCESSOR(SPEED); REAL SPEED;
VIRTUAL: PROCEDURE GET PAGE, GET SEG, OTHER;

BEGIN
REF (JOB)J;
select next job J(user or system) from
READYQ;
compute its burst length, B;
HOLD(B);
IF normal termination THEN J.SCHEDULE (NOW)
ELSE
IF time sliced THEN replace I in
READYQ ELSE .
IF page fault THEN GET_PAGE(J)
ELSE
IF segment fault THEN GET_SEG(J)
ELSE
OTHER;
REPEAT;
END***CPU#kk

If there are several cpu's they contend for jobs
in READYQ. When a job has been selected, the

A Computer Systems Simulator (continued)

length of its next burst is computed from data
within J itself, and the burst is carried out. As
a by product of computing the length of the burst,
we also get an indication of why the job came off
the cpu. The indicator is tested in the IF state-
ments. In paged systems, a routine GET_PAGE has
to be supplied to cover the case when a page fault
arises. Similarly for’ segmen:ed systems. The
time slice is infinite unless set by a call

SET TIME SLICE(t);
which sets its value to t(t > 0.0).

Note that our style of cpu modelling ignores
external interrupts completely — internal inter-
rupts (time slice, page fault, segment fault) are
predicted ahead of time. This mode of simulating
trades a tolerable loss. accuracy for a real gain
in speed (a factor of two or so).

THRASHING THRASHING

‘We illustrate modifications to the cpu defi-
nition with an example taken from a continuing
investigation into the problem of controlling
thrashing. Avoiding thrashing is one of the pro-
blems to be faced when designing a multiprogram-
ming system. If too many programs are allowed to
compete for a share of memory, then one or several
will be unable to obtain sufficient pages to run
comfortably and will suffer from very frequent
page faulting. As a result, the system through-
put is degraded due to an excessive numbér of
page transfers. When thrashing sets in, the only
cure is to remove one or several jobs from the
main memory. It is not satisfactory to choose
a constant level of multiprogramming, since this
may not give sufficient io overlap if it is set
low enough to prevent thrashing. If the multi-
programming level is allowed to vary, the res-
ponse to the system on the onset of thrashing
will be to satisfy immediate demands by stealing
from yet furtherjobs (unless care is taken).

‘ This only exacerbates the problem.

Thrashing is an interesting problem because
of the interplay between an outer algorithm for
controlling the load level and an inner algorithm
for distributing pages fairly amongst jobs in
memory. The two algorithms must mesh together.

Our examples and data are taken from [8]
which contains a full problem description. We
illustrate the use of Green on the first of their
algorithms due to Wharton, which may be spectacu-
larly ineffective. Wharton's (inner) algorithm
gives each job a priority. A job demanding a
page can take one from the pool if one is free,
steal a page from another job in READYQ of lesser
priority, or cannibalize a page from itself. If
these attempts all fail (the job has no pages and
a low priority) it is blockéd.

‘ . Jobs are initially loaded with no pages and
have to build up their working sets by demand.

Thé interval between demands is predicted from a

user supplied definition (NEXTPF) which here is a

332

function of the number of pages now owned (RCP)
and the job's working set (SIZE)

The Green code for a job and a cpu worklng to
Wharton's algorithm is:

JOB CLASS PROGRAM;
BEGIN
REAL PROCEDURE NEXTPF;
BEGIN
REAL K, F; ! see [8], page 154;
K := 0.003 * SIZE/TREQ;
F := (2 %% (-16 * RCP/WSET) +K)/ (K+1.0);
NEXTPF := (1.0 - F)/(F * 1000.0);
END***NEXTPF*%%

WHILE TLEFT > 0.0 DO
BEGIN
EXECUTE (burst) ;
DISK.DOIO;
END;
END***PROGRAM*A#% 3

CPU CLASS WHARTON;
BEGIN
PROCEDURE GET PAGE(J); REF(JOB)J
BEGIN REF(JOB)V;
IF MEM > 0 THEN MEM := MEM - 1 ELSE
BEGIN
READYQ.FIND(V, V.RCP > O AND
V.PRIORITY < J.PRIORITY); -
IF V == NONE THEN J.INTO(BLOCKEDQ)
ELSE READ. PAGE(J);
END;
END***GETPAGE#*#*;
END***[JHARTON* %% 3

SET_TIME SLICE(9.040);

The core map below indicates why Wharton's inner
algorithm on its own will not do: there is simply
no way the top priority job can ever lose pages
and eventually it will have in main memory every
page it ever demanded. ZEach line represents a
memory snapshot (at a time given on the right).
Each job has its own character, ahd RCP, the num-
ber of pages it currently owns is displayed by
printing that character RCP times. #% represents a
pagé in transit - being read in, or written out.
The output shows Wharton's algorithm at its worst,
showing how top priority jobs push lower priority
jobs out of memory, thus reducing the effective
level of multiprogramming and io overlap possible.

1
AAAAAAAAAAAAAAAAAAAABBBBBBBCCCDDDDDD 2
AMAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBB*® 3
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBEB 4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 5
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 6
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL 7
AA 8

9

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BBBBBBBBBBBCCCCCCCDDDDDDDDEEEEFFFGGG
BBBBBBBBBBBBBBCCCCCCCCCCCDDDDDDDDDDE
BBBBBBBBEBBBBBCCCCCCCCCCCDDDDDDDDDDD
BBBBBBBBBBBBBBBBCCCCCCCCCCCDDDDDDDD#
BBBBRBBBBBBBBBBBBBEBBBCCCCCCCCCCCDDDDD
BBBBERBBBBBBBBBBBBBBCCCCCCCCCCCDDDDD
BBBBBBBBBBBBBBBBBBBBBB*CCCCCCCCCCCD*
BBBBBRBBBEBBBBBBBBBBBBBBCCCCCCCCCCCCD
BBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCC
BRBBBBBBRBRBBBBBBBBBBBBBBBCCCCCCCCCC

BBBBBBBBBBBBEBBBBBBBBBBBBBBBBCCCCCCC 20
BRRBBBBBBREBBBBBBBEBBBBBBBBBRBBBBCCC* 21
BRBRBRBBRBBBBBBBBBBBBEBBBREBBBRBBBBBE 22
BBRRBBBRBBBBBEBBBRBBBBBBBBBBBBBBBBBBE 23
BREBBBBBBRBEBBBBBRBBBBBBBBBBBBBBBBBBE 24
CCCCCCCCCCDDDDDDDDDDEEEEEEEEEFFFFFF* 25
CCCCCCCCCCCCCDDDDDDDDDDDDDEEEEEEEEEE 26
CCCCCCCCCCCCCCDDDDDDDDDDDDDEEEEEEEEE 27
CCCCCCCCCCCCCCCDDDDDDDDDDDDDDDEEEEEE 28
CCCCCCCCCCCCCCCDDDDDDDDDDDDDDDEEEEEE 29
CCCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEE 30

[8] gives variations on the theme proposed by
Horning and Lynch. Horning's method looked for
victims randomly in memory and also proved inef-
fective. Lynch's algorithm superimposed an outer
algorithm on Wharton's inmer algorithm by throwing
in a new system process called a 'drain'. This
drain is activated regularly (say, every second-
drum revolution) and hunts for pages from the job
on the cpu and all jobs in an io wait. These
pages are returned to the system pool and the
drain process is then passivated a while. Whilst
Lynch's algorithm can be made to work satisfactor-—
ily at high cpu utilisations, it performs poorly
when memory is already underutilised. This fault
can be corrected by letting the drain stop if mem-
ory utilisation is low.

Our experiments indicate that it is difficult
to tune the drain process against arbitrary job
mixes - it has to be matched with an inner algor-
ithm and one has to decide how often it should be
activated, how many pages it should free per ac-—
tivation, and when it should be put to sleep. Re~
cently we have discarded the drain process idea
and simply thrown a job out when paging traffic
(as evidenced by the number of jobs waiting for a
page transfer) gets high. The computations’ are
more obvious and results so far are encouraging.

CONCLUSIONS

We hdve presented the structure and content
of our Green simulator, which has been used as an
educational tool and in investigating the control

of thrashing in a multi-programmed computer. system.

Green provides skeleton definitions of hardware
components which can be used as defined for many
applications. In more detailed simulations, the
Green definitions can be extended, overriden or
replaced by Simula code. The examples emphasize
the necessity for embedding a simulator in a good
general purpose programming language. By supply-
ing two versions of Green, we can switch from
test runs to production runs without modifying the
source code at all. This technique has proved
very useful and adapts to many other Simula (and
Ada) products.

BIBLIOGRAPHY

1. D. Belsnes and K. A. Bringsrud: "X.25 DTE im-
plemented in Simula", Proc. Eurocomp, London,
1978.

2. A. M. McQuade, A. Salih, and H. J. Gray, "Sim~
ulation of a telecommunications multiprocessor
switching system", Simulation 31(5), 145-135,
1981.

3. B. W. Unger and G. Lomow, "The Oasis 4.0 Ref-
erence Manual'', University of Calgary Research

Report, 1982.

4. G. M. Birtwistle, "Discrete event modelling on
Simula", Macmillan, 1979.

G. M. Birtwistle, "The Demos Implementation
Guide and Reference Manual', University of
Calgary Research Report: 81/70/22, 1981.

6. G. M. Birtwistle, "Advanced use of Simula",
Proc. WSC81 Atlanta, 293-304, 1981.

7. C. A. R. Hoare, "Monitors on operating sysﬁem
structuring concept. CACM, 17(10), 549-557,
1974.

8. A. Alderson, W. C. Lynch, and B. Randell,
"Thrashing in a multiprogrammed paging system",
152-167 in Hoare and Perrott (Eds.) "Operating
Systems Techniques', Academic Press, 1972.

333

