A REGRESSION TECHNIQUE FOR DETERMINING STEADY STATE CONDITIONS
IN TIME SERIES SIMULATIONS

Abstract

In many situations, the simulator finds himself
faced with the problem of simulating a time series
whose initial state s different from the state of
the system after a large number of observations have
been made. This is frequently referred to as the
problem of the initial bias or the initial tran-
ient problem. In this paper, we borrow from the
theory of convergence in distribution to develop

a criterion for convergence to a steady state
process and then develop estimation techniques based
on simple linear regression to determine when the
time series under investigation has converged to a
steady state process.

1. INTRODUCTION

{Xn; n=1,2,. . . .}, it is frequently desired to
obtain estimates of the "steady state" statistics
of the process Xn} That this process has values
at discrete points in "time," as the index para- -
meter, n, shall be considered, may be either a
natural consequence of the process being simulated
or may result from sampling a continuous process
at discrete points in time. In either case, this
type of process represents a large class of prob-
lems encountered in digital computer based
simylations.

In simulating a dizcrete stochastic process,

While the theory for obtaining estimates from
samples from covariance stationary stochastic
processes is relatively well developed, the theory
for obtaining estimates for processes with an
initial bias is not. The initial state of the
process is considered-to be Xy. The problem of the
initial bias arises from the fact that the statis-
tics of the random variable Xg, as characterized
by its cumulative distribution function, are
generally different from those exhibited by the
random variables X, as the time index, n, grows
arbitrarily large. This problem arises naturally
in most simulations of random processes since the
simulator must choose to start the process in some
particular state, and, in general, the simulator
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has no prior precise knowledge of the long run be-
havior of the stochastic process being simulated.
In other cases, the initial state of the process
arises naturally from the definition of the system
being simulated.

Conway (3) was among the first to comment on the
problem of the initial bias as it affects the simu-
lator’s ability to estimate the long run mean of
the stochastic process under investigation. Other
pioneering efforts by Fishman (4, 5) and Gordon (9)
developed additional methods for.the same purpose.
The methods developed by these researchers together
with some variants of those methods were investi-
gated by Gafarian, Ancker, and Morisaku (8) with
the general conclusion that all were lacking in
terms of one or more of several performance measures.
Other, more recent investigations have been con-
ducted by Kelton {10), Gafarian (7), Law (11), Law
and Carson (12), and Schruben (13). Much. of this
research has been conveniently summarized by Wilson
and Pritsker (74, 15). Most of this research has
concentrated on the issues surrounding the esti-
mation of the steady state mean of a process with
initial bias.

Much ‘of the prior research on the problem of the
initial bias has used the fact that the mean of the
stochastic process approached some 1imiting value
as the definition of the term "steady state." The
notion of a stochastic process approaching covari-
ance stationarity has been used to make inferences
regarding estimators for the long run mean. This
research specifically embraces the definition of
covariance stationarity of defining the term,
"steady state." More precisely, a stochastic pro-
cess will be said to possess a steady state if, as
n + »=, the process approaches covariance station-
arity; or: Co- <
Tim E[X] = w (1)

n - o

Tim Cov(Xp,X ) = R(K) (2)

n->e
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The particular definition for steady state is chosen
with specific, and fairly obvious, intent. If a
stochastic process possesses the quality of being
covariance stationary, then the great body of
theory that is available for wuse with covariance
stationary processes can be brought to bear on the
estimation process. Since (1) and (2) are true
only in the limit, the problem of determining when
@ process with an initial bias is a steady state
process may be conveniently summarized as that of
finding a value of n such that (1) and (2) are,

by some measure, "close enough" to being true to
allow all observations which follow time n to be
treated as though they come from a covariance
stationary process. It is fairly obvious that this
is a problem involving convergence concepts. That
is, the problem to be solved is that of determining
a value of n such that the process converges to a
covariance stationary process with sufficient
-"closeness" to allow spectral theory and other
techniques applicable to covariance stationary
processes to be applied. .

As is usually the case, the first step in this
study was the selection of a model from which to
develop theoretical results. The criteria used
in model selection were: (a) the model must be
capable of representing a process or processes
which have an initial btas but which tend towand
covariance stationarity; (b) the model must be
straightforward enough to allow meaningful results
to be obtained; and (c) the model must provide
sufficient theoretical basis to serve as a guide-
line in the analysis of more complex models. The
selected model was the first-order autoregressive
process. .

THE FIRST~ORDER AUTOREGRESSIVE PROCESS
WITH AN INITIAL BIAS

The first-order autoregressive process provides

a convenient model from which to begin the develop-
ment of the theory for determining when a process
is close to steady state. Though the model is a
relatively simple one, it may be used to represent
several -types of processes which are generally of
interest to the simulator.  The theory for the
first-order autoregressive process without a
particular starting condition, that is, without

an initial bias is very well developed by Box and
Jenkins (2). The conditions for which the process
is covariance stationary are straightforward;
hence, for the process without an initial bias,
under these conditions the process will, by

(1) and (2) possess a steady state.

The generalized first-order autoregressive pro-
cess as defined by Box and Jenkins is:
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n
Xnﬂ= a xn_] + En; | I ‘]a 0, ]s 2:--' (3)
together with:
e
Xn = X, - u; for all n (4)

so that:
Xn - u=a (Xn_] - u) + En

or:

Xn

(5)

= aXp.1 * (1-a)u + E,

Stationarity is ensured if |a| < 1. The parameter,
#, is called the level-parameter, and, if the pro-
cess is stationary, then:

E[X,1 = n for all n (6)
The process, En, is a sequence of independent,
identically distributed random variables from the
noEma] distribution with mean zero and_ variance,
og%, which will be denoted NIID (0, o¢2). Finally,
tEe autocorrelation function for this process is
given by:

corr (XyaXpy) = r(k) = al¥l 7y
which clearly shows the covariance stationarity

property.

In order to obtain a process with an initial bias
for further analyses, a modification of the pro-
cess given in (3), (4), or (5) is considered. This
modification consists of two changes. First, the
time index, n, is restricted to the positive in-
tegers and zero. Second, it is assumed that when
n = 0, the distribution of the initfal state of the
process, Xy, is completely known to the simulator.
It is this model which will be referred to as the
AR(1) in this paper. Since the mean of this pro-
cess approaches p as n -+ «, as will be shown later,
it seems reasonable to define the deviation from
the long run mean at the initial time, n = 0, as
the initial bias. Thus:

LY

X0‘= XO -1 (8)
is defined to be the initial bias and jt is, in
general, a random variable, Except for the change
in the time index, relations (3), (4), and (5)
still hold since they are simply different ways of
expressing the same model. However, the mean value
function and autocorrelation function of (6) and
(7) respectively will not, inh general apply to the
AR(1) process as defined here.

Since (3) is the simplest form of the AR(1) model,
it is generally easier to analyze the {Yn} process



than the {X,} process. This technique will be used
first to obta1n another version of the AR(1) model
which directly gives the relatiogship between any
random, variable in the process {Q

} and the initial
bias, X By applying (3) repeategly, it is
possib]g to obtain by induction that:

' o l n-1 .
= N J
Xn = ag + D alE (9)
J=0
Substituting (4) in (9) leads to:
n L j
Xn = a%g + (1-aMu+ 37 a"JE, (10)

J=1

AIn order to investigate the long run behav1or of
X (and, at the same time, X ), it is first necessary
tB determ1ne and distribution functions for each n
“and X . We will begin by considering the X3 pro-
cess. The characteristic function for X w1T1 be
_ developed from the characteristic function for
and E,. The characteristic function E, is:

(u) =

0

oF ECexp(iuEy)] for all n an

n

where i =4/-1_. However, since the sequence (Ey)
is NIID(0, og2), we have:

(u) = (12)

%

exp(-cEzuz/Z) for all n
n :

Similarly, the characteristic function for Xo is:

¢y0 (u) ='Etexp(iuyo)3 (13)

which cannot be further specified since no distri-
bution function for X_ has yet been assumed. Then
eneral form of the cﬂaracter1st1c function for

n'lS

n .
by (u) = %o (a"u) QEE o, (@™du)  (19)

Since ¢E (u) is known from (12), if the character-

1st1c funct1on for X were kpiown, then the
characteristic function for X, could be deter-
mined. Then, ﬁn principal, the distribution
function for can be found by taking ‘the in-
verse transform Thus, before more specific re-
sults can be obtained, some assumptions must be
made about the distribution of In this paper

we will consider only the cage wﬂere is known
and nonrandom. We let X with p& ab111ty 1.
Then the characteristic nct?on for
simply:

ﬁo(u)=emﬂi&0) (15)
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Then, deriving the characteristic function for X :
[
oy (u) = exp "X ou-o 22 [(1 a?h)/(1-a2)3/2
8 "o .
(16)
where (16) 1is recognizable as the characteristic '

function of a normally distributed random variable
with mean ¥ and variance 2 where:

uy = a'Xg (17)
o 2 2 2n 2
ne = o (1-a7)/(1-a%) (18)
For the or1g1na1 process {X,}s 1f X X + p, then

each X is normally distribited with meaH W 4
and variance ?nz

Finally, we take the 1imit in (16) and let:

Tim
N+ e

oy (u) b (u)

exp (-0 2u%E2(1-a2)]} (19)

Then X will have the.norma
zero and variance o 2/(1- &
to ¢ , we also have. that
And, s1nce we can also define X = X _ + u, we will
have Xp = X in d1str1but1on yhere X'is normal with
mean p and variance o 2/(1-a%) = 42,

d1str1but1on with mean
Since ¢xn converges
+ X in distribution:

We now proceed to apply directly the steady state
definitions of (1) and (2) to the AR (1) mode]

is noted for the moment that condition (1) i
satisfied if the process converges in d1str1bution
as discussed previously. Concentration will now
be centered on definition (2) in order to investi-
gate how the autocovariance of the process {X P
might approach the steady state autocovarianch
function R(k).

It

The autocovariance of the {X } process is the same

as the autocovariance of the {Xp} process. Then:
Cov(XysXn+k) = Cov(Xn,Xn+k)
' W N o
= ELX X d = Wgloeg (20)
+k N "
where Hn = a"x_ and ﬁn+k =al ;O - a"a*% = akun

Then, continuing with this derivation.



n+k
Uedilvd oy +kod
H&&ﬂ3=¥“%ufj+w2%fk‘u%53
i=1

n
+ a"+k‘:E: a"'JEtyoEj]
. =] k

n
N
P

J=k

mko ;k
Z n- j+n+k-1i
2 d EEEjEi]

(21)

ny
where, in (21), we have ECX.E.]1 = E[X-E.1 = 0
for all i and j since an ﬁny of tﬂe1noise
random variables are independent and since the noise
is NIID {0,0.%). Furthermore, the term in the last

summand; E[ESE;J is just.cE if j=i and is zero
otherwise. Therefore:
m
vy ko Y 2 2n+k 2 -23 4.
Eys Xpd = a2 REDX) 7 + a2 ;g; ™ (22)
In (22), m = min{n,n+k), (22) reduces further to:
Y oY 4. .2n%k Y2 2
ELXp oK | a {E[XO 1+ o
[1-a2m3/ra2m(1-a2)3} (23)

Finally, (23) is substituted into {20):

= P {Var[XOJ + (a‘2m~1)aE2/(T-a2)} (24)

If we substitute for m using the defining relation-
ship m = min(n,n+k), and consider the cases k < 0
and k > 0 separately, ultimately we will obtain:

u |
Cov(%n}xn+k) =‘GE2(a|kl_a2n+k)/(]_a2)

+ g2Mk Var[yol (25)
If we take the limit in (25), we obtain:
"

Tim Cov(yn,yn+k) =g 2 a‘I |/('l-az)

now E
_ 2 5l
- 2 '
= g° r(k) (26)

where r(k) is the.correlation function of the
generalized first-order autoregressive process.
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Thus, the autovariance function for the first-order
autoregressive process with an initial bias does
indeed approach that of the generalized first-order
autoregressive process.

It is critical to note that the convergence of the
autocovariance function as indicated in (25) gecurs
at a rate which is determined by the factor a<l.

The other condition for autocovariance stationarity,
as expressed in (1) requires convergence of the
first moment, which, as noted in (17) converges at
a rate détermined by a. We further require that
la| < 1 for both types of convergence and for auto-
covariance. stationarity. If we compare these rates
with the rates of convergence for convergence in
distribution we will note that for convergence in
distribution, we require that the mean of the normal
distribution converge at a rate depéndent upon a”
and‘thgt its variance converge at a rate dependent
upon a<". Thus, both convergence in distribution
and convergence to the autocovariance function
will occur at the samée rates.  However, any
practical application of the property that the pro-
cess converges to its steady state autocovariance
function would require some sort of successive
computation of the autocovariance function for all
possible  lags. However, since the process con-
verges in distribution at a comparablie rate, it
seems reasonable to search for a computational pro-
cedure based on the concept of convergence in
distribution.

Since the AR(1) process conyerges in distribution,
the notion that is exploited here is that it is
possible, given a, 1, and o_.2; "to find a value of

n such that the distributiok of X, is, by some
measure, close to the distribution of X, the 1imit-
ing random variable. If we denote by n* the value
of n such that the simulator is satisfied that the
process is close enough to steady state, then a )
test, based on the concept of convergence in distri-
bution is to find n* such that for all n > n*, we
have:

max an(X;asusUEz) - F(X;a,]J,O'EZ)] < g (27)

where expressing the dependence of both distribution
functions on a, u, and ¢ 2 js for emphasis. The
simulator must specify tﬁe value of e, which is,

in effect, a "tightness” criterion for the test.
However, in the case where the differences are be-
tween normal distributions, this should be fairly
straightforward-since ¢ is a determination of
closeness in probability. Now, since we have that:.

[up-u| + O monotonically (28)

qnz 4 @ monotonically {29)



then |Fo(x; a, u, @ 2) - F(x; a, uy © 2)l+ 0 mono-
tonica]?y for all vilues of x. There ore, n* is
the first (i.e., lowest value of n such that (27)
becomes true. So, the computational procedure is,
given a, u, and o.%; evaluate (27) for successive
values of n until the condition is satisfied. This
will determine the value of n*

Generally, this would require an evaluation of Fj
and F for all (infinitely many) values of x. How-
ever, as developed by Beall (1), the maximum of' the
absolute difference betweén the two distribution
functions must occur at one of two values of x:

‘ 2 . .
N-bt b - 4de . irq=0 (30)

X3 Xp T

2 _ 2
where d=o, -0 (31)
b = Z(unc2 - ucnz) (32)

¢ = uo 2 - “n2°2

- 206%6,% Tog (op/c) (33)

and where special cases are discussed in the
reference.

It is noted that given xy, u, and 052, n* is a

function only of e, |a| and a term which will be

referred to as the bias-to-noise ratio:
Bias-to-Noise ratio = |xq - p]/cE (34)

Theoretical values of n* for two examples are

shown in Figures 1 and 2.

AN ESTIMATION TECHNIQUE FOR DETERMINING
STEADY STATE CONDITIONS

In the previous section, a technigue was developed
for determining an index, n*, given a simulator-
specified criterion for tightness, e, given the
distribution of the initial state of the system,
Xg> and given the AR(1) model parameters a, u, and
o.2. However, these parameters are, in general,
uﬁkndwn and must. be inferred from some sequence(s)
of observations of a given AR(1) process. We

must then determine some method of estimating
these parameters in order to apply the convergence
test. Since the process is based on an auto-
regressive model, some technique for estimation
based on regression analysis would seem to be a
Togical candidate. .

The general form of the regression model is very
straightforwardly obtained from the previously
given form of the AR (1) model. Recall from (5)
that:

1000;

soq

2001

1004

n* 501
20+

107

s ' 0.5 1
laj '

Figure 1. Theoretical values of n* for ¢ =
with a bias-to-noisé ratio of 1.

0.05
10003

5001

E

2001

1004

n* 501

201

103 —

Ty 4
lal

Figure 2. Theoretical values of n* for e = 0.05

with a bias~-to-noise ratio of 100.
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Xo = aX g+ (1-a)u +E, (35)

Conditioning each random variable on.the previous
observation, we obtain:

Y =X

n n+1lxn - X

n

ax, + (1-a)u + En

= ax, * 85 + E,

where {36) is easily recognizable as a general form
of a linear model with slope, By = a, and with an
intercept given by:

By = (1-a)u
Then, using techniques similar to those described

in Fuller (6), the model of (36) may be applied
directly to obtain the desired estimates.

(37)

We will assume henceforth that all estimation in
this process is developed from observations taken
from a single replication of the AR(1) process.
That is, we have-a sequence of obseryations

(xps n=1,2,3..,, N) from the sequence of random
variables ( ns-n=1,2,3..., N). Based on (36), we
will also have a sequence of observations,

(yns n=1,2,3,..., N-1) = (xps n=2,3,4,..., N) from
the random varlables {Yn; n=1, 2, 3 N-])
Therefore, after N observat1ons have been taken
from the AR(1) process, these observations may be
grouped into the m=N-1 point pairs: (xy,y7),
(X25¥2)s+vvs (Xps¥p). This set of pairs of obser-
vat1ons is the Same as the set: (x15x2)5 (x9,%3),
-++s (XN.7oXy). Then, the estimates are the usual
set:

m

n :
[Z (x3-x) (yi-yﬂl[z (x4-x) 2] (38)
i=1

i=1

a:

and,
®o
where (38) X and y are the sample means.

From (37),
simply:

=y - ax (39)
(38), and (39), an estimate for u is

=8,/ (1-a)

The estimate for cﬂ is easily developed from the
residuals of the rggress1on process as:

(36)

mn

22 W

i=]

22 (m-2)"] -y1 (41)

y; =2 T BXss i=1,25..., M (42)
These estimators are based entirely on the "tradit-
jonal" estimators obtained using 1inear regression
methods. The reference above to the fact that each
Y; is completely determined by an x; which is non-
random. after the 1N observation ana by a randon
noise term E;, is the key to being able to apply
these est1ma%1on techniques. However, due to the
correlation between -successive observations, the
usual properties of these estimators (unbiasedness,
variances and so forth) are no longer straight-
forward.

A MONTE CARLO EVALUATION OF THE ESTIMATORS

Having established an estimation process for de-
termining when an AR(1)  proces$ reaches steady

state (or, determining when it does not possess a
steady state), it remains to validate the techniques
previously described through some experimental pro-
cess. Further ‘the estimator, N*, has an, as yet,
undefined performance. In order to perform these
validations and assessments, a series of Monte Carlo.
computer simulation runs were made.

An evaluat1o§ of the performance of the estimates

i, u, and op© was conducted by performing a single

Monte Carlo repllcat1on of an AR(]) experiment.

Several cases were examined by varing the auto-

regressive parameter, a, and the bias-to-noise ratio.

Typical results of these trials are shown in

Figures 3 through 6. For each case, the resu]ts are

shown by plotting the estimates a, it, and 6.2 which

are obtained using the Tinear regression meghods

Fach estimate is shown as it was computed after

each new sample point is added to the regression

analysis. Finally, each set of figures contains

the estimates for n* (i.e., n*) based on a, 3, and
o2 at each value of n. Obv1ous1y, each set of

e§t1mates can be computed only when a sufficient

number of observat%ons has been made (three for a

and u, four for'og“ and thus for N9,

The results tend to verify that the regression
method will ultimately produce a fairly good set of
estimates of the parameters of the process. In
order to compute fi* for each of the cases examined,
the value of ¢=0.05 was used. For Figures 3 and 4,
the theoretical value of n* is zero since the bias~

" to-noise ratio is zero and the process starts in

444

steady state. However, the method given cannot
compute an n* less than unity. In each of the cases
examined, n*. does approach unity,



[
=

1000 ° 300 3 100

3

1000

Figure 3. Performance of the Regression
Estimators When a=0.2 and the bias-
to-noise ratio is O.

1000

=

Figure 4. Performance of the Regreésion
Estimators When a=0.8 and the bias-
to-noise ratio is 0.

Though' a theoretical .basis exists for determ1n-
ing the properties of tne estimates & and Gp2

the properties of the estimator N* are more
obscure. Therefore, a series of experiments was
performed in order to assess the performance of
this estimator statistically.. The AR(1) process
was simulated until a value of n* was obtained
‘such that n > n*. The value of n for which this
was first true was then considered as an 6bser-
vation of n*. Thirty independent replications

of this expériment. were performed for each case
considered. Thus, the t-statistic may be app11ed
to the thirty observatiops of n* cbtained in order
to estimate the mean, E[N*], and its variance,
from which the 95% conf1dence intervals.for n*
may be computed.

Q 300 1000 -1} 500 1000
n n

2qe

PR a*

. .

. . I

°3 500 1000 ¢3 500 1000
n n

Figure 5. Performance of the Regression

Estimators When a=0.2 and the bias-
to-noise rat1o is 10.

1000 [] 1000

s 8
25

Figure 6. Performance of the Regression
Estimators When a=0.8 and the bias-
to-noise ratio is 10.

The results of this set of experiments are shown in
Figures 7 through 12. In the figures, the experi-
mental results are 'shown plotted over the theoret-.
ical values of n* shown in Figures 1 and 2 as well
as for other theoretical values of n* not dis-
cussed previously. In Figures 7 through 12 the
following convention is used for depicting the
experimental results:

o upper limit of the 95% confidence
interval for n*

A

9 n*

1 Tower 1imit of the 95% confidence
interval for n*
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1000;
5001

2001

100

0 T T ols BE!
' fa}
“Figure 7. Performance of the Estimator fx
when ¢=0.05 and the bias-to-noise
- ratio is 1.
1000;
500]
ﬁ.
2004
100{
a 50] 3
4
20 _I I
t. ‘. . v v - v v - L Y al v L 4 "t
0 . 0.5 1
la}
Figure 8. Performance of the Estimator N*

. when £=0.05 and the bias-to-noise
ratio is 10. .
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1000;
5001

2004

1004

s 0.5 1
’ fal

Figure 9. Performance of the Estimator ﬁ*
when €=0.05 and the bias-to-noise
ratio is 100.

1000;

5001

<.

¥

200

100;

) 0.5 k!
' lal
Figure 10. Performance of the Estimator N*’

when €=0.01 and the bias-to-noise
ratio is 1.



1000;

5001 confidence intervals, if considered as a percentage
4 of the true value of n*, are wider for low values of
the bias-to-noise ratio. Finally, we note that for

2004 those values of a, ¢, and bias-to-noise ratio for .
which n* is theoretically greater than four, the .
100- estimator N* is generally, though not always, slight-
] ly positively biased. In_these ranges of a, the
o behavior of the estimate n* is 'very close to that
ax 501 of n*.

SUMMARY AND CONCLUSIONS

20

101 .:‘ih We have presented a series of experimental results
1 di B which tend to lend credence to the theory. developed.
. While these experiments were by no means exhaustive,

they did cover a wide range of AR (1) processes, and,
for the AR(1) model, it is reasonable to conclude
that the methods for detecting steady state are, in
fact, proper and useful. Of special. importance is
the discussion of the properties of the estimator

w
PR W

Y ee———————————v———— N*.  The proposed method shows every promise of per-
0 0.5 1 forming well when applied to the AR(1) process with
’ lal an initial bias. ‘

Figure 11. Performance of the Estimator f*

when €=0.01 and the bias-to-noise The total research effort-may be summarized by point-

ing out that for a particular model, the AR(1) pro- .

ratio is 10. cess, a method has been developed for determining
1000, : when the process is, by some preset criterion, very
h close to being a covariance stationary process,
001 which is, by previous definition, a steady state
500 process.
4
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