Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

75

MODEL DEVELOPMENT REVISITEDM

Richard E. Nance

Systems Research Center

and

] Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

A chronology of simulation language development
provides the background for understanding the current
status of simulation model development. Factors
characterizing the current status include a shift in
emphasis from program to model, more commitment to

modeling tools, and the lingering impedance of
simulation language isolation. Current and future
needs are identified. Specific approaches to meeting

these needs are cited in an extensive description of
current research, and a brief review of current
perceptions of software development technology
portends a convergence toward the paradigm set forth
by the model based methodology. We conclude that the
technology of simulation model development continues in
a transition that portends more rapid changes for the
future.

A BRIEF HISTORY OF SIMULATION SOFTWARE

A brief chronology of simulation software conveniently
divides into five periods: the early era of custom
programs, the period of emergence of simulation
programming languages (SPLs), the second generation
of SPLs, the era of extended features, and the current
period.

During 1955-60, simulation like most computing
applications was done with custom programs, i.e. each
simulation required the development of all software
necessary for accomplishing that task. The late K.D.
Tocher lay the groundwork for changing this with his
recognition of common functions, grouped together
under the title General Simulation Program (GSP) [43].
Tocher's contribution of GSP, and his writing of the
first book [42] contributed much to the early
realization of the importance of software support for
the simulation task. Tocher also invented the Wheel
Chart, a forerunner of the Entity Cycle Diagram,
which provides a conceptual basis for symbolic
modeling underlying the program generators still in use
in the United Kingdom and elsewhere.

* This paper is an updated and expanded version of
"A Tutorial View of Simulation Mode! Development,
Proceedings of the 1983 Winter Simulation Conference,
pp. 325-331.

* Research contributing to this paper was supported

in part by the U. S. Navy under Contract No.
N609201-83-G-A165 through the Systems Research
Center, Virginia Tech.

The first SPLs emerged during the 1960-65 time frame.
Thorough histories of both GPSS [98] and SIMULA [33]
are available. Control and Simulation Language {(CSL),
produced by Buxton and Laski [5] in the UK, and the
first version of GASP was developed by Kiviat [15].
Interestingly, the software developed during this five
year time period forms the foundation for the
simulation software in use today.

The second generation of SPLs followed in the time
frame 1966-70. GPSS I, 1lI, 360, and V all appeared
in this period as did several versions of SIMSCRIPT I
- 1.5, and 1I-Plus. SIMULA 67 superseded the earlier
version, and Extended CSL (ECSL) replaced its
ancestor. Simulators like GASP took on various new
forms as well; e.g. GASP Il, 11A, and others.

While entirely new issues of SPLs were uncommon in
the 1971-78 period, marketing strategies emphasized
the addition of features to the existing versions. For
example SIMSCRIPT |I1.5 incorporated the process
concept and added a continuous simulation capability.
GPSS shed some of its insularity and enabled external
access to FORTRAN and PL/l routines. In an
ambitious effort at Norden, actually begun in the late
1960s, graphical abilities were added in a version
permitting limited user interaction, designated as
NGPSS [32]. The interactive versions of other SPLs
began to appear toward the end of this period.

Major developments in the UK and Europe during the
1971-1978 period extended the ideas introduced with
Programming By Questionnaire [35,38] to the
interactive production of simulation programs.
Prominent in this work are the original contributions of
Clementson [6] in the development of CAPS based on
ECSL, the multiple target language capabilities of
DRAFT [23,24], and the modular design suggested
with MISDES [7]. Related efforts, with more ambitious

goals in the U.S., are described in the papers by
Heidorn [11,12].

Toward the end of this period, concerns for more
fundamental issues in simulation modeling appeared in
the book by Zeigler [45], which drew together ideas
published earlier in various papers and reports. At
the same time, the need for a better domain for model
development appeared in the work of Nance [27],
Kleine [17], and Oren [37]. Efforts such as Nelson
and Lindstrom [31] and Heimberger [13] began to
illustrate the significant capabilities for interactive
model development and program execution.

THE CURRENT STATUS

Simulation model development is in a transition period:
the transition in focus from programming to model
development. This transition is reflected in the
interest and activities of organizations ranging from
marketing firms such as Pritsker and Associates to
research groups in universities. While several factors
characterize the transition, three are most obvious:

76 Richard E. Nance

(1) a shift from the program to the model view of
the simulation process,

(2) interest in and commitment to the development
of support tools, and

(3) the influence of a concept/language

impedance.

The shift in focus from program to model is reflected
in the increasing concern for conceptual problem
description in contrast with language prescribed
guidelines. The Graphical Modeling and Simulation
System (GMSS) is one example [2], and
extensions of program generators [25,26] offer yet

another. In one sense the model view represents a
realization that executable languages often are
constraining in their realization and expression of
concepts, and the "rush to code" is a poor design
strategy. Stemming from this emphasis on conceptual

modeling is the development of intermediate
specification forms, most often not executable in
themselves. The Ship Combat System Simulator (SCSS)
[39] utilizes a network representation with combat
system elements described as nodes following a specific
syntactic format. The nodal definition and the
linkages among nodes prescribed in SCSS provide a
semantic structure closer to the conceptual views of
the combat system engineer than can be derived from
the SIMSCRIPT [I.5 code, that constitutes the eventual
(executable) representation. Other examples can be
cited to support the claim that multiple model
representations are becoming more the 'standard” for

large, complex models, and the clear trend is toward
the separation of model description and program
execution.

Increasing expectations indicated by the use of

simulation for yet larger and more complex models and
the increased focus on model description have ushered
in new concerns for tools to support the model
development process. Commercial products now offer

auxiliary data base systems and graphical output
generators. The communication and formatting
capabilities of SDDL [18] are being augmented by

analysis routines that are applied to non-executable
mode! representations. The benefits to be derived
from utilizing formalisms, based on modeling rather
than programming needs, for simulation support are
becoming more apparent [46,47]. Such support tools

will play major roles in the verification of non-
executable model representation.

The concept/language impedance stems from the
parochialism created by slavish adherence to SPL

representations of world views, see [29] for further

discussion of this problem. Even more serious is the
continued use of general purpose languages, in
preference to SPLs, for simulation modeling. Despite

the optimistic expectations of educators, no decrease is
readily apparent in the number of models in FORTRAN,
PL/1, PASCAL, etc. This fact, perhaps more than any
other single point, emphasizes the perceived difficulties
of translating modeling concepts into a correct SPL
representation. Nevertheless, the barriers of language
isolation will continue to inhibit the development of
simulation model representation. As Kiviat [16] aptly
phrased it so many years ago, we continue to have an

“inversion of theory and interpretation” with the
misguided view that the theory is expressed by an
SPL.

recent.

THE MODEL LIFE CYCLE

Figure 1, taken from Nance and Balci [30],
characterizes the model life cycle as progressing
through chronological periods: problem definition,
model development, and decision support. Figure 2
offers an elaboration of the phases within each of these
periods and depicts the processes by which a modeling
study transitions from one phase to another.

FPROBLEM
DEFINITION
MODEL
DEVELOPMENT
DECISION SUPPORT
TRME
Figure 1. The Chronological Periods of the Model
Life Cycle.
PROBLEN
DEFINITION
COMMUNICATED
(PROBLEM) FiASES
Problem
Formulation
FORMULATED
PROBLEH
Investigation
PECISION SUPPORT of Solution
PHASES Techniques
DECISION PROPOSED SOLUTION
MAKERS TECHNIQUE
{Mode1ing)
IHTEGRATED Syﬂe':’ ” {
DECISION Tovestigation 4 MODEL DEVELOPHMENT
SUPPORT PUASES
SYSTEM AND OBJECTIVES —_—-————_——T
DEFIRITION ~.. Hodel Formulation
,/
Présentation V4 CONCEPTUAL
of ’ HODEL
Hodel Results I/Rede(innion
/
/’ ‘\ Hodel
! \ Representation
)
f -
CONMNICATIVE
HODEL
RESULTS MODEL(S)

AY

/ Programming
\\\Experlmentation
\,

PROGRANMED
» HODEL
Al -
EXFES;E‘ENY t e Experimenta'l
—-— Design

Phases in the Chronological Periods of the
Model Life Cycle.

Figure 2.

Model Development Revisited

The activities during the problem definition phases
principally involve the “client" and project manager
dialogue that hopefully results in a precise definition
of the system to be studied and the objectives to be
realized from the study. Problem definition is
dependent on both technical and organizational
(political) factors, and success can be achieved only
by effective communication among the participants and
the documentation of decisions reached during these
phases.

The model development phases begin with the defined
system and the stated objectives. Conceptual models
in the minds of one or more modelers must eventuaily
find expression in one or more communicative models.
The communicative model represents a basis for
assertions and tests as well as the reconciliation of
varying concepts. The program model follows from a
communicative model; and, embodied within an
experimental design, the experimental model produces
results. Note that verification is intended to be used
wherever possible in all of the phases of probiem
definition and model development. Validation
traditional sense is reserved to the comparison of model
results with system behavior after completion of the
experimental model.

The integrated decision support period is initiated with
the acceptability of the model by the client
manager(s). Again, both technical and organizational
factors can contribute to the acceptance decision;
however, the support tools can contribute significantly
to the model credibility, which is considered to be the
most cru_cial factor in the acceptance decision.

FUTURE GOALS FOR
DEVELOPMENT

SIMULATION MODEL

The most comprehensive goal expressed by researchers
in simulation modeling is the creation and consequent
realization of the Model Development Environment
(MDE). The MDE would provide an interactive setting
for model creation so that the modeling activities,
supported by necessary model development tools,
contribute to long term organization assets in the form
of models, data, experimental designs, and
experimentation results. An analyst or modeler, within
the MDE, would be supported in a structured, more
axiomatic approach to the modeling and experimentation
activities. Model verification, supported by such
tools, would be applied throughout the mode!l
development phases. Emphasis in the early model
development phases would be on problem definition and
precise statements of system boundaries and study

objectives. Only later would the issues of efficient
execution emerge as constraints as decisions are
reached regarding the implementation of executable

mode! representations.

A second important goal is that support be provided
throughout the model life cycle. Of course, this goal
is intimately linked to the first.

APPROACHES TO THE IMPROVEMENT OF SIMULATION
MODEL DEVELOPMENT

The intent of this section is only to identify
approaches to improvement. References are provided
so that the interested reader can consult them for
details and specific information. The approaches are
categorized as follows: (1) extension of software
development techniques, (2) extension of program
generators, {3) extension of SPL definition, (4) system
specification languages, and (5) model-based
methodology.

in the .

77

Some claim that simulation modeling is only a minor
extension of programming in software development.
Consequently, the Programming Support Environment
(PSE) or Software Engineering Environment (SEE)
provide all of the necessary tools. Perhaps a counter
example to this opinion is found in the necessity for
creating SDL/SDA as an extension of PSL/PSA [40,41]
for simulation applications. The relationship between
programming and model development is discussed
further in the following sections.

The program generator technology is widely used in
the United Kingdom and elsewhere in Europe. Some
program generators such as DRAFT and CAPS are now
rather mature software systems. Extensions to these
generators are viewed as providing ready
communication between management and analyst, and
some capabilities for decision support are believed to
be readily achievable if not already present in current
versions [26].

One school of thought is that more formal modeling
approaches are required to deal with the complex
chailenges of simulation applications [47]. General
systems theory is viewed as providing the foundation
for such approaches [38]. SPLs "based explicitly on
systems theoretic concepts” and the "development of
conceptual and mathematical theories for guiding the
practice of modelling and for designing soffware tools

." offer advantages over current approaches [38, p.
70]. Also within the scope of SPL extensions, but
differing from the general systems theory approach is
the Entity-Attribute-Set (EAS) structure suggested by
Markowitz [21]. Utilizing the current five levels of
SIMSCRIPT 1.5, Markowitz extends the Ilanguage
applicability to a data base level and beyond. The
result is a more powerful descriptive mechanism but
one that is still executable. An application

development system based on EAS and utilizing
nonprocedural language database inquiry is a recent
product of this approach [22].

The Delta Project [14], cooperatively between the
Norwegian Computing Center and the University of
Aarhus, represents a holistic view of life cycle
support. While the Delta Project can be viewed in a

narrow sense as another system specification language,
the philosophy advanced by Nygaard and Handlykken
[34], [34] reflect an intent much broader in scope.

A final approach is the model based methodology,
which is descriptive of the Conical Methodology (CM)
{28]. This methodology forms the basis for an
implementation of a Model Development Environment that
is itlustrated in Figure 3, taken from [3]. The

structure of the Ada* Programming Support
Environment [1] is followed in explaining the support
tools for modeling. The CM emphasizes the
hierarchical decomposition through a top-down model
definition followed by a bottom up model specification.

Ada is a registered trademark of the
Department of Defense Ada Joint Program Office.

U.sS.

78

Mode
Analyzer

Model
Translator

Model
Generator

Model
Yerifier

Command
Language
Interpreter

KMDE
Functions

Code

Assistance
Manager

Manager

Premodels
Manager

Project
Manager

Minimal MDE

Figure 3. Layered lllustration of the Software
Components of a Model Development
Environment (MDE).

MODELING AND PROGRAMMING PARADIGMS

The tendency to view model development as identical
with program development is generally criticized by
those working in the modeling community. Differences
between the two, especially when compared prior to
1980 say, are easily distinguished:

(1) Software systems implemented with “static”
languages, such as FORTRAN, COBOL, and
PL/}, represent design challenges far simpler
than those faced by simulation modelers
attempting to deal with the inherent
complexity of representing dynamic
dependencies.

(2) The validation of software systems in terms
of conformance to design specifications can
always be achieved by convincing the users
that a change in the specification represents
no loss in functionality; while the system
being simulated can rarely be modified to
conform to the behavior of the model.

(3) Software systems are rarely used by high-
level managers, and when they are, in-depth
understanding is unnecessary; while the use
of a model relies almost totally on the degree
to which credibility can be gained with the
decision-making user.

The more recent emphasis on process-oriented
software, abstract data types, concurrent
programming, embedded systems, and object oriented
languages appears to signal a shift so fundamental as
to alter the software development paradigm. The
consequence appears to be an evolution toward
methodological approaches resembling the model based
methodology.

Indications of this evolutionary trend are found in the
paper by Balzer, et.al. [4], which calls for formal
specifications developed and maintained by end users.

Richard E. Nance

The user becomes the systems analyst, or ih the
simulation domain, the modeler becomes the simulation
programmer. Modifications are made at the
.specification level, and each respecification is subjected
to a reimplementation, which is highly automated.

The concept of an automated programming assistant is
not new; the concept is expressed by Winograd [44]
over ten years ago, but the role of the assistant is
expanded throughout the life cycle. The capabilities
of the assistant are enumerated in a lengthy list
ranging from project monitoring to program analysis.
Clearly, such an automated assistant must possess or
acquire considerable knowledge about the application
domain. Domain dependency cannot be ignored on this
level, a conclusion explained lucidly by Giddings [8] in
a more recent paper that identifies the need for
problem-solving environments and advances some
crucial issues and implications related to the technology
demanded for creating them.

Influenced by the early work of Zurcher and Randell
[48], the view of Lehman [19], that the programming
task is essentially a modeling task appears to be
gaining acceptance. As a consequence, parallels
between modeling and programming, modeling
environments and programming environments, and the
necessary requisites for both technologies are likely to
be more broadly recognized. Contributions to the
concepts of complexity and validation, such as found in
{20] should prove valuable in both the modeling and
programming camps.

SUMMARY

A brief chronology of simulation software helps to
understand the current status, which finds simulation
modeling in a transitional period. Viewed in the
context of the model life cycle, the needs for more
effective and efficient simulation model development can
be identified. Some consensus is evident in the
definition of tools, but the approaches to improvement
are charted quite differently by researchers and
practitioners in the simulation community. At this
juncture no clear directions have been established.
However, the indications of convergence in the
software and model development paradigms can only be
beneficial for both communities.

REFERENCES

[1] Advanced Research Projects Agency,
"Requirements for ADA Programming Support
Environments - STONEMAN," U.S. Dept. of

Defense, Arlington, VA, 1980.

[2] Austell W.P., Jr., "Graphical Modeling and
Simulation System (GMSS)," Simulation: Tools
and Techniques Conference, Washington, DC.

[3] Balci, O., "Requirements For Model Development
Environments,"” Technical Report CS83022-R,
Department of Computer Science, Virginia Tech,
Blacksburg, VA, 1983.

[4] Balzer, R., Cheatham, T.E., and Green, C.,
"Software Technology in the 1990's: Using a New
Paradigm," Computer, 16 (11), 1983, pp. 38-45.

[5] Buxton J.N. and Laski, J.G., "Control and
Simulation Language," (Computer Journal, 5,
1963, pp. 194-198.

[6] Clementson, A.T., "Extended Control and.

Simulation Language,” University of Birmingham,
England, 1973.

{7]

(8]

{91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

18]

f19]

[20]

{21]

Model Development Revisited

Davies, N.R., "A Modular Interactive System for
Discrete Event Simulation Modeling," Proceedings
of the Ninth Hawdii International Conference on
System Sciences, 1873, pp. 296.

Giddings, R. V., "Accommodating Uncertainty in
Software Design," Communications ACM, 27 (5),
1984, pp. 428-434.

Gordon, G., "The Development of the General
Purpose Simulation System (GPSS)," In: History
of Programming Languages, Wexelblat R (ed.),
Academic Press, 1981, pp. 403-437.

Handlykken P. and Nygaard, K.,
Description Language: Motivation, Main Concepts
and Experience from Use," Software Engineering
Environments, Hunke H (ed.)}, North Holland,
1981, pp. 157-172.

"The DELTA

Heidorn, G.E., "English as a Very High Level
Language for Simulation Programming,” S/GPLAN
Notices, 9(4), 1974, pp. 91-100.

Heidorn, G.E., "Automatic Programming through

Natural Language Dialogue: A Survey," [BM J.
Research and Development, 20, 1976, pp.
302-313.

Heimberger, D.A., "Interactive Modeling, "
Simulation and SIMSCRIPT Conference,
Washington, DC, 1978,

Holbaek-Hanssen, E., Handiykken, P., and
Nygaard, K., "Systems Description and the

DELTA Language," Report No. 4 (Publication No.
523), Norwegian Computing Center, Oslo, 1977.

Kiviat, P.J., "GASP - A General Activity
Simulation Program," Applied Research
Laboratory, United States Steel Corporation,

Monroeville, PA, 1963.

Simulation:
Memorandum

Kiviat, P.J., "Digital Computer
Modeling Concepts,” RAND
RM-5378-PR, Santa Monica, CA, 1967.

Kleine, H., "A Vehicle for Developing Standards
for Simulation Programming," Proceedings of the
Winter Simulation Conference, 1977, pp. 730-741.

Kleine, H., "Software Design and Documentation
Language," JPL Publication 77-24, California
Institute of Technology, 1977.

Lehman, M.M., "Programs, Programming and the
Software Life Cycle,” Research Report No. 80/86,

Department of Computing and Control, Imperial
College, 1980, p. 48.

Lehman, M.M., "Program Evolution," Research
Report No. 82/1, Department of Computing and
Control, Imperial College, 1982, p. 21.
Markowitz, H.M., "Proposals for the
Standardization of Status Description,” Research

Report RC 7782 (33671), IBM TJ Watson Research
Center, Yorktown Heights, NY, 1979.

Markowitz, H.M., Malhotra, A., and Pazel, D.
P., "The EAS-E Application Development System:
Principles and Language Summary,"
Communications ACM, 27 (8), 1984, pp. 785-799.

(23]

[24]

[25]

[26]

(28]

{31]

[32]

£33]

[34]

(35]

(28]

79
Mathewson, S.C., "Simulation Program
Generators," Simulation, 23(6), 1974, Pp.
181-189.
Mathewson, S.C., "Interactive Simulation
Program Generators," Proceedings of the

European Computing Conference on Interactive
Systems, Brunel University, 1975, pp. 423-439.

Mathewson, S.C., "Computer Aided Simulation
Modeling and Experimentation,” Proceedings of
the Eighth Australian Computer Conference,
1978, pp. 9-13.

Mathewson, S.C., "The Application of Program
Generator Software and its Extensions to
Discrete Event Simulation Modeling, " IE

Transactions, 16 (1}, 1984, pp. 3-18.

Nance, R.E., "The Feasibility of and
Methodology for Developing Federal
Documentation Standards for Simulation Models,"
Final Report to the National Bureau of
Standards, Department of Computer Science,
Virginia Tech, 1977.

Nance, R. E., "Model Representation in Discrete
Event Simulation: The Conical Methodology,"
Technical Report CS81003-R, Department of
Computer Science, Blacksburg, VA, 1981,

Nance, R.E., "The Time and State Relationships
in Simulation Modeling," Communications ACM,
24(8), 1981, pp. 173-179.

Nance, R.E., and Balci, O., "The Objectives
and Requirements of Model Management,”
Encylopedia of Systems and Control, Pergamon
Press, to appear, 1985.

Nelson, S.S., and Lindstrom, G., "CONSIM: A
Conversational Simulation Language Implemented
through Interpretive Control Self-Modeling,"
Technical Report UUCS-77106, Department of

Computer Science, University of Utah, 1977.

Norden Division of United Aircraft Corporation,
"Users Guide to NGPSS," Norden Report
4339R0003, 1971.

Nygaard, K., and Dahl, O0.J., "The Development
of the SIMULA Languages," |In: History of
Programming Languages, Wexelblat R (ed.),
Academic Press, 1881, pp. 439-493.

Nygaard, K., and Handlykken, P., "The System

Development Process -- Its Setting, Some
Problems, and Need for Methods,”" Software
Engineering Environment, Hunke H (ed.), North
Holland, 1981, pp. 157-172.

Oldfather, P.M., Ginsberg, A.S., and
Markowitz, H.M., "Programming by
Questionnaire: How to Construct a Program

Generator," RAND Report RM-5128-PR, 1966.

Oldfather, P., Ginsberg, A.S., Love, P.L., and
Markowitz, H.M., "Programming by
Questionnaire: The Job Shop Simulation Program
Generator," RAND Report RM-5162-PR, 1867.

80 Richard E. Nance

{371 Oren, T.I., A personal view on the future of
simulation languages, Proceedings of the UKSC
Conference on Computer Simulation, 1978, pp.
294-306.

[38] Oren, T.il., and Zeigler, B.P., "Concepts for
Advanced Simulation Methodologies,” Simulation,
32(3), 1979, pp. 69-82.

[89] Pohoski, M.W., "A Top Level Description of the
Ship Combat System Simulation,” Naval Ocean
Systems Center (jointly with NWC and NSWC),
1981.

[40] Teichroew, D., and Hershey, E.A., "PSL/PSA:
A Computer-Aided Technique for Structured
Documentation and Analysis of [nformation

Processing Systems," [EEE Transactions on
Software Engineering, Vol. SE-3(1), 1977, pp.
41-48.

[41] Teichroew, D., Macasovic, P., Hershey, E.A.,
and Yamamoto, Y., Application of the entity-
relationship approach to information processing.
systems modeling, in: Entity-Relationship
Approach to Systems Modeling and Design, Chen,
P. (ed.), North-Holland, 1980.

[42] Tocher, K.D., The Art of Simulation, Van
Nostrand Company, Princeton, NJ, 1963.

[43] Tocher, K.D., and Owen, D.G., "The Automatic
Programming of Simulations,” Proceedings of the
Second [International Conference on Operational
Research, 1960, pp. 50-68.

[44] Winograd, T., "Breaking the Complexity Barrier
Again," SIGIR Forum: Proceedings of the
SIGPLAN-SIGIR Interface Meeting, IX (3), 1984,
pp. 13-22.

[45] Zeigler, B.P., Theory of modelling and
simulation, John Wiley and Sons, 1976.

[46] Zeigler, B.P., "Concepts and Software for
Advanced Simulation Methodologies," Simulation
with Discrete Models: A State-of-the-Art View,
Oren, T.l., Shub, C.M., and Roth, P.F.
(eds.), IEEE, 1980, pp. 25-44.

[47] Zeigler, B.P., "System-Theoretic Representation
of Simulation Models," /IE Transactions, 16 (1),
1984, pp. 19-34.

{48] Zurcher, F. W., and Randell, B., "lterative
Multi-Level Modelling--A Methodology for
Computer System Design," Proceedings of the
IFIPS Congress, Edinburgh, 1968, pp. 867-871.

