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Abstract

We investigate the problem of selecting the
'best’ one of k arbitrary systems or
alternatives. Consider one observation from
each of the k systems. By ’best,’ we mean
that system which has the highest
probability of yielding the ’most desirable’
of the k observations. The term-:’most
desirable’ is defined according to some
criterion of goodness determined by the
experimenter. MWe show that this problem can
be formulated as a multinomial selection
problem. Hence, multinomial selection
procedures are, in a sense, nonparametric
procedures. An up-to-date survey of
’indifference-zone’ multinomial procedures
is given.

1. Introduction

Consider k different competing populations
{or systems or alternatives, etc). A
natural question to ask is: Which of these
k systems is ’best?’ By ’best’ system, we
could informally mean, e.g.

~that one of k inventory policies which
maximizes profit,

-that 'one of k scales which is the most
precise, or

-that one of k computer systems which has
the greatest availability.

Thus, ’best’ can take on a variety of
meanings depending on the practical problenm
at hand.

Benote the k populations (sources of
observations) as “1’“2""’"k’

respectively. Suppose we take independent
vector-observations (X1,X2,...,Xk), whera X,

is from “i’ iz=l,...,k. Further, for
i=1,...,k, denote:
P, = P{Xi is the most desirable?
of x],xz,...,xk}.
The term 'most desirable’ must be defined

according to some criterion of goodness
determined by the experimenter. Assume that

nothing is known beforehand concerning the
values of the pi’s. Obviously, that “i
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associated with the largest of the pi’s is

the population which has the highest

probability of yielding the ’most desirable”’
ovservation {(of those aobservations from the
k-vector). In this paper, our goal will be
to find that "i associated with the largest

of the pi’s. We refer to that "i as the

’best’ population.

In order to motivate this definition,
consider a simple example. Let A and B be
two (s,S8) inventory policies. Profit is
taken to be the criterion of desirability.
Suppose that
Profit from A 1000 w. p. 0.001
0 Ww. p. 0.999

Hnou

and
Profit from B = 0.999 w. p. 1.

Clearly, E{Profit from A) = 1 > 0.899 =
E(Profit from B); i.e., A gives the higher
average profit. However, P{Profit from B >
Profit from A} =.0.999; so B gives the
higher profit almost all of the time. For
this reason, the experimenter might
justifiably consider policy B to be Better
than policy A.

It is therefore meaningful to consider as
’best’ the policy which will mest likely
produce the ’most desirable’ observation.

The goal of finding the ’best’ population
can be viewed as that of finding that cel}
of a k-nomial distribution with the largest
underlying probability. Suppose that we
take one observation from each of the k
populations. Auard a one (a ’success’) to
the ﬁi corresponding to the ’most desirable’

of these k observations {use randomization
if necessary.) Award a zero to the
remaining k-1 T.”s. This is clearly the
same as taking an observation from a
multinomial distribution with cell

probabilities PysesraPy

Thus, the problem of finding the ’best? one
of k arbitrary populations can be formulated
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as a problem of finding that one category of
a k-nomial distribution with the highest
underlying ’success’ probability. This
implies that any procedure which finds the
multinomial cell associated with the largest
probability is a nonparametric procedure.
Since most real-life systems do not follow
one of the *usual’ probability
distributions, such nonparametric procedures
are seen to be very useful. MWe group these
nonparametric procedures under ths heading
of aultinomial selection procedures.
Additional motivation for the above
arguments can be found in Bechhofer and
Sobel (1958).

In Section 2 of this paper, we give a brief
summary of the pertinent notation and
terminology. In Section 3, some of the
existing selection procedures are
presented.

2. Background

We introduce notation and terminology which
will be useful for investigating the problem
of finding the muitinomial cell which has
the largest cell probability. Suppose that
we take independent observations
sequentially from a k-nomial distribution
with cell probabilities Pi2PgsrecesPys

P; 20, Zpy = 1, until some stopping
criterion (several of which will be given in
the sequel) is met. Most of the procedurses
which we will study take observations (up to
a limit, perhaps) until one cell has
*significantly more’ successes than the
other cells (whereupon the stopping criteria
call for the termination of sampling).

Denote X, as the number of observations
E]

t
from cell i after t multinomial observations
{(or ’stages’) have been taken, i=1,...,k;
t=1,2,... Further, denote

3
p[]] < p[2] € oo £ p[k] as the ordered p;’s

and x[]]’t < e £ x[k],t as the ordered

% ’s. Assume that we have no a priori

t
3
knowledge as to how the p[i]’s are paired

with the multinomial cells.

Our goal is to select as best that cell
which is associated with Plk]® the largest

probability. If the cell corresponding to
p[k] is actually chosen, we say that a

correct selection (CS) has been made.
it is desired that the probability of

3
correct selection (P{CS}) be at least P

Also,

* L. .
whenever © Plk-1] < Plk]’ where {P ,8 } is

»
pre-specified by the user {with 1 < 8 < =

and 17k < P. < 1). Define

x
Qe‘ = {gle p[k_]] < p[k]}. He call Qe‘ the
cl
(]
indi fference-zone. [Multinomial procedures
such as those to be considered below fall
under the classification of so-called
indi fference~zone selection procedurss.
Another rich family of selection procedures
employs the so~called subset approach; this
approach will not be emphasized here. The
reader should refer to Gupta and
Panchapakesan (1878) for material concerning
the indifference~-zone and subset
methodologies. |

preference zone and 9 the

We will consider the following configuration
of p[i]’s as a benchmark for comparison

among procedures:

Pri] * e'p[i], P=1,... k=1 (sc)

-
e, ppyp = (k=1+0) L TS B A I

x “ - ,
p[k] = 8 (k-1+8 ) '. SC stands for s!/ppage
configuration (with slippage factor e').

For somae sampling procedures [cf: Bachhofer,
Elmaghraby, and Morse (19589)], this
configuration of p(i]'s minimizes the P{CS}

over p ¢ ﬂe'. In this case, the SC is

called the least-favorable configuration
(LFC). Informally, the LFC can be viewed as
a ’‘worst case’ configuration (given that
p = Qe'). It is not known whether the SC is

the LFC for all of the multinomial

proceduraes to be presented in the sequel.
However, this is a reasonable conjecture,
and we shall treat the SC as if it were,

=
indeed, the LFC. Since we desire P{CS} > P
for all configurations p ¢ Q% then

{(assuming the conjecture to be true) we can
equivalently require that

r{csip = sc} 2 P,

Another interesting configuration is tha
equal probability configuration (EPC), where
p; = 1/k for all i. Of course, the term

’correct selection’ is now meaningless; but
the EPC is useful as another benchmark in
that we would expect such a configuration to
maximize a multinomial procedure’s expected
sample size (i.e., the expected number of
multinomial observations needed before the
termination criterion is-met).

Denote the sample size for a procedure £ as
Spe E(SP) is the expected sample size.

Ideally, we wish to find a procedure which

guarantees P{CS|p = SC} > P" but which is
also parsimonious with observations; that
is, E(SPIE = SC) and E(SPIE = EPC) should be
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3. Some Multinomial Procedures

In this section, we concentrate on
indifference-zone procedures for selecting
the multinomial cell which has the largest
probability. Recall that when using the
indifferenca-zone approach, the experimenter

must pre-specify two constants, P* and o .
The procedures to be discussed below insurs
that:
p{csl 1 ] »

° Ple-1) S Ppgl 2P
where PR stands for probability
raquirement, For all of these procedures,

(PR)

we establish the following conventions:

-Al11 observations are independent
multinomial observations.

-T is defined to be the stage at which the
procedure in question terminates
sampling. T may be a random variable.

-He will choose as best that cell
corresponding to *[k].T (using
2

randomization if necessary).

3.1 A single-sample procedure

The first procedure uwe consider is that of
Bechhofer, Elmaghraby, and Morse (1858),

denoted as PBEM'

Procedure PBEM:

» »
1. Specify k, P , and & .

2. Take NBEM observations, where N

BEM

- =
NBEH(k,P ,0 ) is to be found in the tables
of BEM (1858). Nggy 15 the number of

multinomial observations which must be taken
in order to satisfy the PR.

Remarks 3.1:

1. Kesten and Morse (1959) prove that the SC
is the LFC.

2. In PBEM’

take is fixed at NBEH'

procedure is said to be a fixed-sample or
single-sample procedure.

the number of observations we

For this reason, the

Example 3.1.1:

Suppose that k = 3 and that we specify
E ]

=
P =0.75 and 8 = 3. Use Table 1
[abstracted from BEM (1959)] in order to

find NBEM'

9- 1.1 1.5 2.0 3.0

NBeEM
1 .355 .429 .3500 . 600
2 . 358 . 428 . 500 .800
3 .362 .464 .563 .6986
4 .367 .484 .594 . 734
S .370 .486 .817 .768
8 .374 .515 . 646 . 804

Table 1 (for PBEM):

L
P{CS|k=3,p=LFC} for selected & and Ny,

Reading down the e' = 3.0 column, we see
that NBEM = 5 is the smallest value of NBEM

which achieves the PR (Note that owing to
the discrete nature of the multinomial
distribution, PBEM overshoots slightly the

desired P = 0.75.)
observations,

If we take S

the PR will be guaranteed.

3.2 PBK’ an improved version of PBEM

By considering the following example, it
becomes apparent that PBEM is sometimes

wasteful with observations.

Example 3.2.1:

Suppose that k = 2, NBEM = 7, and Xg =

(xl,s’XZ,S) = (4,1). It is obviously

impossible to terminate sampling with

T < X5 13 there is no chance for cell 2

to be chosen. Since cell 1 is guaranteed to
be the victor regardless of the remaining

two observations, we should stop sampling at

T = 5.//

With this example in mind, we compare two

procedures, the latter due to Bachhofer and
Kulkarni (1984).
Procedure H

BEM
1. Specify k and N.

2. Take N observations.//



110 David Goldsman

Procedure PBK:

1. Specify k and N.

2. Take observations until either

2-A. The stage t = N or

2-8B. x[k],t—x[k-l],t = N-t (Stop sampling if

the cell{s) with the second largest number
of observations can only tie the cell
corresponding to x[k] ¢» even if the

2

remaining N-t observations are taken.)//

Remarks 3.2:

1. Note that PBK is a sequantial procedure.

2. It is clear that E(SP ) < E(SP ).
BK BEM

3. Bechhofer and Kulkarni show that
P{CS[PBEM} = P{CSIPBK}' Thus, Pgg Preserves

the P{CS} of the less parsimonious
procedurae, PBEM; we can use the more

efficient Pk with no loss of P{Cs}.

Example 3.2.2:

Let k = 3, P* = 0.75, and 8" = 3. Then

E<SPBEM) = Nggy = 5- It is straightforward

(but tedious) to show that E(SP ) = 3.95 in
BK

the LFC.//

3.2 A sequential procedure due to Ramey
and Alam (1979)

Procedure PRA:

- E
1. Specify k, P , 68 .

2. Take observations untii either

2-A. x[ = N or

k],t

2-B. X[k] t_x[k-l] t = r, where r and N are
2 ?

- »
determined by k, P , and © , are to be found

- ]
in tables for certain k, P , and © (NB: See
Remarks belou.)//

Remarks 3.3:

1. Ramey and Alam’s tables actually contain
a number of errors; the user is advised to
consult Bechhofer and Goldsman (1984a).

2. The number of observations which PRA
takes is bounded by kN-k+1.

3. It is not knoun whether the SC is the LFC
for all k for PRA’ but we will make the

reasonable assumption that this is the case.

4. r and N are determined in such a way that
the PR is satisfied and e(sp lp =" LFC) is

minimized over the (r,N) grid.

S. PRA is not directly comparable to P
Howaver,

BK”®
it seems that for most choices of

- L3
k, P, and & , PRA requires fewer

observations (on the average) than Pak*

Example 3.3.1:

Again, let k = 3, P" = 0.75, and 8" = 3. Me
abstract a smaill portion of the necessary
(corrected) tables for PRA from Bechhofer

and Goldsman (1984a).

P 8" r N p{cs} E(S)
.75 3.0 2 3 798 3.68
75 2.4 2 5 .760 4.70
.75 4 . 756 8.80
.75 4 12 .757 18.24

Table 2 {(for Poal)?
P{cs|k=3,p=LFC}, E(5].) for various P, ©

We see that if r = 2 and N = 3 are chosen, a

P{CS} of 0.796 will be achieved in the

conjectured LFC. The overshoot of the

P{cS|p = LFC} (0.796 vs. P~ = 0.75) is again

due to the discrete nature of the problem.

Further, in this example, E(SP lp = LFC) =
RA

3.68 ¢ 3.95 = E(SPBKIE = LFC). ,,

3.4 An unbounded sequential procedure

Bechhofer, Kiaefer, and Sobel (1968) give an
unbounded {or open) sequential procedure
which satisfies the PR.

Procedure PBKS:

P §
1. Specify k, P, 0 .
2. Take observations until

%il (1/9')x[k]’t—x[”’t < (1-P™ysp"

1S ’/
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Remark 3.4: BKS show that the SC is the LFC
for this procedure.

Example 3.4.1:

- L]
Let k =3, P =10.75, ® = 3., Consulting
the appropriate tables in Bechhofer and
Goldsman (1984b), we immediately find that
P{Cs|p = LFC} = 0.842 (.0004) and
E(S, |p = LFC) = 4.526 (.051).
BKS

results are Monte Carlo estimates obtained
via simulation; the entries in parentheses
are the accompanying standard errors. The

results are fairly precise, as can be seen

by the small standard errors.

These

3.5 PBG’ an improved version of PBK

S

As in the above example, it turns out that

»
Pags frequently yields p{cs|p = LFC} >> P .

This extra P{CS} is at the cost of
unnecessary observations. Bechhofer and
Goldsman (1984b) give a procedure which
decreases the attained P{CS} to a level

»
slightly greater than P , but which also
saves observations.

Procedure PBG:

. - =
1. Specify k, P , ©6 .

2. Take observations until either
k=1 X =X,

2-a. 5 (10 LTl e o ooy ot o

i=1

2-B. the stage t = N where N is

BG’ BG

-
determined by k, P , 6-, and is to be found
in Bechhofer and Goldsman’s tables for
»

 §
certain values of k, P , 8 )

Remarks 3.95:

1. NBG is chosen as the smallest upper bound

on the total number of observations such
that the PR is satisfied.

2. Unlike PBKS' PBG s bounded.

3. It is not known whether the SC is the LFC
for this procedure, but we so conjectura.

4. PBG 18 not directly comparable to PBK or
= L]

to PRA' For many choices of k, P , 8 , it

turns out that PBG requires fewer

observations (on the average) than P The

BK”

user should consult the relevant tables when
designing an experiment.

Example 3.5.1:

» L3
Let k = 3, P = 0.75, 8 = 3. MWe abstract a
small portion of the necessary tables for
Pgg from Bechhofer and Goldsman (1984b):

» L3
P ] Nea P{cs} E(S)
.75 3.0 S . 757 3.48
.75 2.4 8 . 780 5.59
.75 2.0 13 . 751 8.18
.75 1.8 32 . 752 17.80

Table 3 (for PBG):
P{CS|k=3,p=LFC}, E(S|.) for various P, @

He must choose NBG = 5 with the resulting
p{cs|p = LFC} = 0.757 and E(s, |p = LFC) =
BG

3.48.//

3.6 PBGZ’ an augmented version of PBG

We now employ the same device as was used in
PBK; viz., stop sampling when the cell in

second place only has a chance to tie.

Procedure PBGZ:

»
1. Specify k, P , 8
2. Take observations until
k-1

2-A. ¥
=

(17e™y KL e[ ]t < (1-P"yrP™ or

2-B. t = N = N is from P

where NBG BG

BG’

2=C- X0y, 7% k=1],t ~ Nea2"t s/

Remarks 3.6:
1. Clearly, E(S Yy ¢ €(s ).
“sG2 ey

2. By reasoning similar to that given in
Bechhofer and Kulkarni (1384), P?CS|PBG2} =

p{cs|P That is, no P{CS} is lost

BG}' X
between the two procedures.

3. Tables for P

G2 are currently being
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prepared. Ses Remark 3.6.2 above for
information concerning the P{Cs}.

Example 3.6,.1:

Again, let k = 3, P = 0.75, 8 = 3. Then
Nggo = 5 and P{cs|p = LFC} = 0.757 as

before. Now, E(S, |p = LFC) = 3.24 ¢
G2

3.48 = €(S, |p = LFC).
Pog e

3.7 General remarks

We have seen procedures which follow a poset
of sorts in terms of sampling efficiency.

PBEM leads to the more efficient PBK'

Similarly, PBKS leads to PBG which, in turn,

leads to PBGZ' PRA stands alone. Ke note
that augmentations can be made to PRA’ but

this makes the search for the optimal
combination of r and N intractable.

Feem > ek

Pexs 7 Pec > PBa2

PRA
In lieu of work currently in progress, we
recommend use of A or P when these

RA BG2
procedures are applicable to the situation
at hand.
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