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ABSTRACT

Nonoverlapping batch means (NOLBM) is a well-known
approach for estimating the variance of the sample
mean. In this paper we consider an overlapping batch
means (OLBM) estimator that, based on the same
assumptions and batch size as NOLBM, has essentially
the same mean and only 2/3 the asymptotic variance

of NOLBM. Confidence interval procedures for the mean
based on NOLBM and OLBM are discussed. Both
estimators are compared to the classical estimator of
the variance of the mean based on sums of covariances.

INTRODUCTION

Consider a covariance stationary stochastic process
{X} having mean u and variance Ry, defined over a
discrete or continuous time parameter and having a
discrete or continuous state space. Estimation of u
from a realization {x} is a common problem, especially
in computer simulation of stochastic systems.

The family of point estimators usually considered is
2?=] wiX;, Where z?=] a; = 1. In the nonstationary

case early observations are often weighted less, but
in the stationary case X = n"| E?=] x; is used
almost exclusively. We study only X here, but note
that X is not the minimum variance linear estimator,
which would place greater weight on both early and
late observations when autocovariances are positive.

Confidence interval procedures for u based on
dependent data have been widely studied. Recent
textbooks on stochastic simulation provide good
discussions: Bratley, Fox and Schrage [1], Fishman
[2] and Law and Kelton [3]. The problem is to find
functions of the data ua({x}) and v ({x}) such that

PLU (X}) < < V ({X3)} = 1-a (in wh1ch case the

procedure is called valid) while obtaining reasgnab]e
interval width and stability. Typically U X - H,

and V =X + H,» where the half width Hy = o/2 /V(X)
and qm/2 is a constant reflecting the Jo1nt distribu-

tion of X and,the estimator of the variance of the
sample mean, V(X).

The method of batch means is of interest in this
paper. The usual approach, based on nonoverlapping
batch means (NOLBM), is X # Ha K where
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Typically, one of three types of batch means point
estimators are used:

ij =] Egg(j-])m+i X; and X = n! z?=1 X

- -i - _'l t*

X; = f(1 1)¢ X(t)dt and X = Jo X(t)at
or - - 1

X; = ta (N(ito)—N((i—UtO) and X = t7' N(t,)

where N{t) is a counting process with N(0)=0. We treat
the first case here, but analogous results hold for the
second and third cases by replacing summations with
integrations, m with tgs and n with t,.

The second section discusses NOLBM, the third section
discusses OLBM, and the fourth section relates both
NOLBM and OLBM to the classical estimator based on the
sum of covariances.

NONOVERLAPPING BATCH MEANS

Performance of the NOLBM procedure depends on the joint
distribution of X and S2. A valid procedure results
when K

{a) X is normally distributed,

X i
(b) X and 52 are independent,
(c) (k- T)Sz/oﬁ has a chi-square distribution
with k-1 degrees of freedom,
where °k , variance of each of k batches, equals n/mV(X)

and

In NOLBM the batch size m (or equivalently the number
of batches k when the sample size n is fixed) is chosen
with regard to the last two criteria, since the first
is unaffected by batch size. Since these two criteria
are difficult to measure in an application, two other
criteria are typically substituted:

(d) the batch means are independent
and

(e) the batch means are normally distributed.
(See, e.g., Fishman [4], Law and Carson [5], Mechanic
and McKay [6], and Schriber and Andrews [7].) Criteria
(d) and (e), which are sufficient to ensure (b) and
(c), are satisfied in the Timit as n + « and m + .
Therefore, at least asymptotically, increasing the
batch size m (or equivalently for a fixed sample size n
decreasing the number of batches k) moves the procedure
toward validity.

Balancing the quest for validity is the need for short
and stable confidence intervals, as usually measured by
the mean and coefficient of variation of the half
width, respectively. Schmeiser [8] quantifies and
discusses the effect of m and k on these properties.
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OVERLAPPING BATCH MEANS.

Because of the role of batch independence in NOLBM as
discussed in the last section, the idea of using over-
Tapping -batch means (OLBM) can appear, at best,

unnatural, since the common observations in the over-

lapping batches causes substantial positive correlation.

However, the idea in many ways is a good one, as
discussed in this section, because batch size rather
than batch independence is the crucial element.

We consider the OLBM estimator of V(X)

Vm(X) = (m/n) 2?;T+] (Xj(m) - X)z / (n-2m#1)
T gm-1 X is the batch mean of size

where Xj(m) =m I, i
m beginning with observation Xj. As you progress
through this section, the denominator (n-2m+1) will
begin to seem 1ike the obvious choice (if it doesn't
now). As a beginning, note that for the extreme case
of m=1 this estimator reduces to 52/n which is the
usual estimator for the 1ndependent case. Also note
the coefficient {m/n) is used rather than 1/k, which is
consistent with using X rather the average of the batch
means, which ignores the last fraction of a batch.

The remainder of this section studies properties of V
We show that this estimator and a NOLBM estimator have
essentially the same bias, but that the OLBM estimator
has only 2/3 the asymptotic variance. We also show
the covarjances with X are essenfially equal which
implies the correlation between V, and X is greater
than that between the NOLBM estlmator and X.  Finally
we show the computational effort is not prohibitive.

The results of this section follow almost direct]y from
Proposition 1, which relates the OLBM estimator Vm(X)
to the NOLBM estimators

v':,m()-() = (m/n) Z‘l]?:'l ()-(m(j_] )+'l - )-()2 / (k‘])

which is the estimator for V(X) arising from k NOLBM
beginning with observation i, The subscript k
indicating the number of batches is superfluous, since
k = [{n-i#1)/m], but we carry k explicitly to make the
argument more clear. On the other hand, the sample
size n is not carried explicitly. The proofs of the
propositions indicate the main argument, often with
algebraic detail, but are often not rigorously stated
here.

n, -
Proposition 1 states that the OLBM estimator Vm(X) is
a weighted average of the NOLBM estimators.

Proposition 1.

kl h-i -
o oo CeDni T ¢ (2T ()

v (X) =

m n-2m+1
where k' = n - km + 1,

v -
Proof: Substitute the definitions of Vm(X) and
Vi m(7() and verify that

(kT)k' + (k=2)(m-k') = n - 2m+ 1. ||

Proposition 2 says that the bias of V (X) is essen-
tially the same as that for Vk m( ).

Proposition 2.

E(V (X)) 2 V(H) - (2m

k
- - J=
where Rj=Cov(Xh( m, Xh+3m(

1
1
m

ﬁj) / (n-2m+1)
) for all h.

)

Proof: Recall that for the NOLBM estimators
J
- k) R.

BT (1) = v - 20171 550 O S

Substituting this result into the expression
obtained by passing the expected value operator
through the summations in the definition of the
OLBM estimator and s1mﬁl1fy1ng yields

_ _ 2m - %) R.
E( - J

V(X)) = V(X
V(%) = V(X —

2{m-k*) [z
+
k(k-1)(n - Zm +1)

R + k¥ Rk 1]

Since the last term is negligible, the result is
obtained.

The bias, of course, is the weighted average of the
biases for k and k-T NOLBM estimators. In the limit as
batch size grows, R decreases and all the estimators
are unbiased.

N -
As might be expected since V_(X) is a weighted average
of the NOLBM estimators, the"OLBM estimator has a
smalier variance.

Proposition 3.

. A T S _
Tim V(Vm(X)) / v(vk’m(x)) = 2/3
n+ow
m= e
n/m -+

Proof: The Timit of the denominator is

(m/n)% 204/ (k-1), which follows directly from
(k—1)s§/cﬁ having variance equal to 2(k-1)
since it has a chi-square distribution. The
1imit of the numerator is identical, except

the coefficient is 4/3 rather than 2, as shown
in Meketon [9]. |

Propositions 2 and 3 suggest that we should consider
confidence interval procedures based on OLBM, The
three obvious (extreme) possibilities are

v o
X & ta/z,ln/ml—1 I/Vm(X)
m

Nizz2m

<1

)

a/z,ln/m] 1
and
n

bz (372) Jn/m]-1 Vil

The first is the direct substitution of Vm(X) for Vk )
L

with no change in batch size m or the constant t. The
second increases the batch size by 50%. The third
increases the degrees of freedom of the constant by 50%.
The third in some ways seems the most natural, and
Fishman [10, p.284] suggests this is the customary
modification in a similar situation. We have not
studied these three possibilities empirically, but the
next proposition suggests the larger batch size of the
second procedure is appealing.

1+

X)

Proposition 4.
- - A-i - -
%w%ﬂLM>@MWmMJ)
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Proof: Let ¢ = Cov(VL m(X),X). Then to a very
slight error ¢ ﬁ.CoC(V&’m(X),X) for
i=2,3,...,k". To a slightly larger error we
also have ¢ '_“.Cov(Vk 1 m(X) X) for
i=k'+1,...,m. Since the OLBM estimator V (X)

is a weighted average of the NOLBM est1mators,
all of which have essentially covar1ance with X

of c, then Cov(V (X),X) » Cov(Vk m( ),.X).

However, from Proposition 2 we know the
variance is Targer for NOLBM, which makes the
correlation for NOLBM smaller. ||

The good news for OLBM is that the correlation is zero
when NOLBM is zero. The bad news is that OLBM are
less robust. However, the second confidence interval
procedure from the Tast page uses batch sizes 50%
larger than the NOLBM batch size, making the variances
in the comparison essentially equal. This procedure
then has less bias than NOLBM, similar variance and
similar correlation with X.

We leave the issue of confidence interval procedures
now in favor of considering computational issues
and relationship to other estimators.

The computational effort required for V (i) at first
appears quite large. A Tittle thought, however,
quickly yields the following algorithm for any given
m and n:

/ n

n
a-<+m 21-:1 X'i

b « X

m
Tz %4
S < (b-a)2
j=«0
While j < n-m do
j«gj+1
b+«b+ xJ+m - Xj
5 <5+ (b-a)

End

-2
s<m’s

Y -
V(%) « (w/n)(n - 2n+ 1) s

While reasonably efficient, this algorithm must be
repeated, except for the first step, for each value of
m considered. Relationships developed in the next
section yield a more efficient algorithm when many
values of m are to be considered.

OLBM, NOLBM AND THE CLASSICAL ESTIMATOR

Since V(X) = [R0 + 2 zn } (1- %J Rj], a reasonable
estimator of V(X) is to subst1tute estimators of the
autocovariances into the equation to obtain what we
will call the classical estimator. Proposition 5, the
main result of this section, states that the OLBM
estimator can be viewed as a classical estimator.

Proposition 5.
VoK) m(n-am+ 1) ][RO +2 ] a - —J R ]

~ _ =1 en-j ¥ ¥
where R, =n 35y (X5 - X (X545 - %)
for j = 0,1,...,m-1.

V_(X) = (m/n) """”<>'<J.<m)-i)2 / (n-2m1)

Proof: =1
(m/m) 3, M S

- X
12/ (n-2m+1)

= (mn )—1zn m+]ZT é 2-0 j+1-?)(Xj+£-X>/("-2m+‘)
N mZ{=1(XT-X) +.zz?; m- 1)2" (x -K) (X 5-%)

-~ mn (n - Zm + 1)

Vo (x-00% + 2080} (D)
= n (n - 2m + 1)

0G0 (448)

_ -1 5 m-1 iy o
=(n-2m+1) [R0 + 221=1 (- ﬁ) Ri]

The approximate equality arises because of the end
effects; that is, some early and some late cross-
products would appear more often if they had occurred
in the center of the data. The reduction of the triple
sum to a double sum in the fourth step of the proof may
be substantiated algebraically or by organizing the
terms graphically, as shown in Figure 1 for n=8 and m=3.

15 T KKy X]XJ 422
XX + TRy F KoK [F KoK, s
e B LT T 1] R
|X4X2 + X4X3 + X4X4 + X4X5 + X4X6 55

X5X34- X X4 + X X + X5X6 + X5X7

Jj=6
6%71". X6%g
6 + X7 7 + X7X8

XSX + X8X7 + X8X8

X6X4 + X6X5 + X6X6 + X

XoXg +|XoX

Figure 1. Graphical illustration of the terms summed

in the OLBM estimator.

Each cross-product occurs once for each rectangle in
which it is included. The doubling term arises from
symmetry. The main diagonal corresponds to estimating
RO, the first off-diagonal corresponds to R], and so

forth. ||

Proposition 5 says that the OLBM estimator v (X) is

algebraically equivalent, other than for minor end
effects, to the classical estimator that uses the same
gumbﬁr of autocorrelations as the OLBM uses in each
atch.

Fishman [10] discusses the classical estimator in the
context of spectral estimation. The specific estimator
considered there is
- -1 rp p-1
mg/n = (n-p)~" [Ry + 22j=1

which differs only in the coefficient.

NN
(1 -9 Ry
Thus the
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asymptotic aspects of Propositions 2 and 3 can be 5.
shown via Proposition 5 and the known asymptotic
properties of M.

The relationship of Proposition 5 is useful for calcu-
Tating the OLBM estimator for various values of the 6.
batch size m, since only the autocovariance estimates

are needed and they can be collected cumulatively.

es suggested by Fishman [10] and Meketon [9], plotting

(X) as a function of m can be useful for determining 7.
al appropriate batch size m. In fact such plotting
suggests another estimator for V(X) at a still higher

Tevel:

n - v
= §m ¥ . =
Vmg smy (X) = ngm] By Vi (X) where mgm1 B, =1 8.

We now briefly comment on the relationship of the

NOLBM estimator Vk m(i) and the OLBM estimator vm(X). I
Recall Figure 1 with the overlapping rectangles cor-
responding 1o the overlapping batch means. Not sur-
prisingly, Vl m(X) corresponds to including only

10.

rectangles 1, m+l, 2m+1, ..., which are adjacent but
do not overlap, resulting in fewer terms being used.in
the estimator. In particular, the estimators for R,
corresponding to the terms in the j th off-diagonal
are missing terms that,are as useful as the terms
included. Similarly, Vﬁ m(X) corresponds to
rectangles i, m+i, 2m+i,>. .. .

SUMMARY

We have studied the relationship between nonoverlapping
batch means, overlapping batch means, and classical
estimators for V(X). The overlapping batch means

estimator, Vm(X), has been shown to be algebraically

equivalent, other than for end effects, to the
classical estimators using m-1 covariances.

A potential reason for the unpopularity of the
classical estimators arises in Proposition 4, where
the covariance of the overlapping estimator with the
point estimator for the mean was seen to be greater
than the same quantity for nonoveriapping batch means,
except in the Timit when both are zero. However,
given the popularity of nonoverlapping batch means and
the near domination of nonoverlapping batch means by
overlapping batch means, we think the use of overlap-
ping batches deserves further study.
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