Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.) 545

THE USER INTERFACE OF GPSS/PC™

Springer Cox
Minuteman Software
P.O. Box 171
Stow, Massachusetts 01775-0171

Abstract

GPSS/PC is a new implementation of GPSS, the General Purpose Sim-
ulation System, with several interactive extensions to the user inter-
face. Its overall design integrates a syntax directed statement parser
with the run time system. This results in a number of advantages in
the controllability of running simulations.

Unlike traditional simulation language implementations, GPSS/PC
was designed with the simulation primitives on the user interface.
This means that functions previously accessible only to transactions
‘within the simulation at run time can now be called manually from
the keyboard. This results in a high level of control over the actions of
entities within the simulation. Any GPSS block statement can be
applied in this manner and the resuits of the interaction can be
explored immediately.

GPSS/PC also provides for numeric and structural modifications tobe
made at run time. Simulations can be stopped or interrupted and any
named value can be modified without requiring reassembly of the
model. Further, with relatively mild restrictions, blocks in the GPSS
model can be added, deleted, or replaced without the need for reassem-
bly.

Several additional aids to usability have been implemented in the
user interface. A syntax directed statement parser refuses to accept
keystrokes which cannot possibly lead to a syntactically valid state-
ment. A command recognition feature allows partial specification of
statemnent verbs. Other aids include cursor prompting, online help,
and an integrated statement editor. Nearly all statements, including
GPSS block statements, can be assigned to function keys and recalled
with single keystrokes.

Keywords

GPSS, discrete event simulation, syntax directed parsers, user inter-
face.

The Scope of this Paper

This paper does not cover all the design prin-
ciples behind GPSS/PC™and it does not fully
describe all the features of the user interface.
Instead, it treats a few of the highest prinei-
ples and follows their effect on the user inter-
face of GPSS/PC.

The Need for Immediacy

Present day simulation languages are char-
acterized by their heritage as descendants of
brogramming languages. From the earliest
days of the computer industry, running a pro-
gram meant preparing a text file of source
code and then using it as input to another
program, the compiler. Even after the com-

pilation, the task is far from done. The next
step 1s to combine existing compiled pro-
grams 80 that large programs can take advan-
tage of modular designs. The output of this, the
link step, was a computer program that could
be executed. However, notice that the time,
‘when the user was concerned with the details
of the program, has long since passed. His/her
mental context has been shifted toward prob-
lems imposed by an unwieldy computer sys-
tem, away from the simulation problem he/
she i8 attempting to solve. In fact, the situa-
tion is even worse than this. In order to find,
debug, and correct the inevitable program-
ming errors, the user must repeatedly run the
incorrect program hoping for decent diagnos-
tic messages, making corrections to the origi-
nal text file, and repeat the whole process for
each error.

546

This edit-compile-link-run-debug-edit cycle
puts unnecessary distance between the ana-
Iyst and the simulation. In such an environ-
ment the user's mental context has changed
considerably between the time when. a simula-
tion primitive is agserted and the time when it
is tested. This increases the risk of new errors
caused by the correction of old ones. Clearly, it
is desirable to detect errors as soon as possi-
ble. This is one of the highest principles be-
hind the design of GPSS/PC™.

On the constructive side, it is extremely desir-
able for the user to see effscts of his/her ac-
tions as soon as possible. When the closeness
between the user and the simulation allows
feedback in short time periods, the user devel-
ops a “feel” of the environment in which he is
working. It is the immediacy and responsive-
ness of close working environments that best
serve the exploratory and intuition-building
activities of the simulation analyst. Just as a
hammer is the extension of the hand of the
carpenter, the simulation environment
should be the extension of the mind of the
analyst. It should be immediately responsive
to inquiry and to manipulation. It should
allow the immediate correction of errors, and
it should provide for a function which can
monitor for exceptional conditions. This im-
mediacy is the highest design principle of
GPSS/PC™.

Immediacy of Error Detection - Levels of
Error Defense

The major design goal with respect to user
errorsis to detect them and treat them as soon
as possible, preferably before the userhaslost
the mental context in which the statement is
asserted. In GPSS/PC there are several lines of
defense with. respect to errors. We start with
the earliest and proceed to the most removed
érror handling features.

The first line of defense carries the principle
of early detection. into the mind.of the user. It
is the attempt to prevent the user from com-
mitting the mental errorin thefirst place.Ina
sense this line of defense seems trivial and
need not be stated. However, it is useful to
include it in the overall user interface descrip-
tion. The user interacts with the simulation
gyste according to a mental picture he/she has
developed of the product. Errors develop when
the picture of the interface is inaccurate, or
when conclusions on it are drawn incorrectly.
There is little we can do about the latter type,
however the mental picture preésented to the
user can be controlled somewhat by product
architecture and documentation. To attack
the problem, we must make the product archi-
tecture consistent and predictable. We must
remove restrictions and exceptional con-
ditions. Allocation limits, unnecessary data
typing, and unnecessary exceptions in the op-
eration of the product must be removed. And
most important, the produet documentation.
must build the mental picture of the product
as efficiently as possible.

The second line of defense comes into play
after the mental error has been committed. If
the error is formulated in the mind of the user

Springer Cox

we must prevent it from entering the simula-
tion environment, and we must provide im-
mediate negative feedback before the mental
context of the user begins to dissolve. When a
mental error is comnmitted, we must not allow
the user to pass to the next operand or state-
ment. GPSS/PC™ does this by a feature called
“keystroke error prevention”. By checking
each keystroke for invalid syntax, GPSS/PC™
refuses to allow syntax errors into the simula-
tion environment. Online help is then avail-
able to present valid alternatives. We will dis-
cuss this in more detail below.

The third line of defense treats those errors
which have not been stopped by keystroke
error prevention. In general, errors related to
block statement interactions and some
remaining restrictions are detected only after
the simulation has begun. To maximize the
closeness of the error to the mental context in
‘which it was conceived, GPSS/PC combines all
major phases of the edit-compile-link-run-
debug cycle into a single phase called a ses-
sion. When an error causes a .simulation to
stop abnormally (an “error stop”™), the user
can correct the offending statement(s) and
proceed immediately. At this time the mental
context of the user is as fresh as possible.
Included in the third line of defense is a mech-
anism for detecting unusual conditions dur-
ing the simulation. A PLOT is available to
observe state variables during the simulation
‘When arun time error is detected, exploratory
commands can be issued to examine the state
variables of the simulation.

The Fourth line of defense is required by the
third. When run time error detected, we must
provide for an immediate fix. GPSS/PC™
allows the structure of the model to be mod-
ified with each statement scanned. Not only is
it unnecessary to leave the run time environ-
ment,but the simulation doesnot evenhave to
be restarted. In order to make this work, the
user must be able to make corrections to the
structure of the model and to manipulate en-
tities in great detail. In. GPSS/PC™, we allow
blocks to be inserted, deleted, and replaced in
the current model without even reqguiring
that the simulation be restarted. In addition,
the design of GPSS/PC brings all the simula-
tion primitives up to the user interface. By
doing this, the user can apply the same op-
erations to transactions manually as can be
done deep within the simulation. We therefore
refer to this feature as “manual simulation”.
Block definition statements become action
commands permissible through keyboard en-
try allowing a whole new level of controllabil-
ity in the simulation environment. This is dis-
cussed below.

A final, less directed line of defense includes
all functions designed to relieve the tedium of
various man-machine interactions. In this
group we place automatic spacing, which re-
lieves the tedium of alligning fields in state-
ment formats, and command recognition,
which allows auser to use his/her own abbre-
viations for reserved words. Assignable func-
tion keys allow any statement to be repeated
with a single keystroke. This is quite useful in
stepping through a simulation during the de-
bugging period.

547

The User Interface of GPSS/PC

Consistent and Predictable Architecture

Considering the difficulty of mastering alarge
uger manual, sometimes it is far more impor-
tant to maximize what does not have to be
said, than it is to say everything. It is the
unpredictability of a specification that de-
mands its inclusion in the documentation.

GPSS/PC has several features intended to re-
duce the “knowledge load” of the user. First, in.
GPSS/PC all integers enjoy unlimited preci-
sion, The allocation for sach numeric value
expands to fit the number. This implementa-
tion makes GPSS integer arithmetic superior
to floating point arithmetic in several impor-
tant respects. First, with a floating point sys-
tem clock, there is a danger that after a long
simulation, system clock updates will under-
flow, thereby invalidation simulation results.
Second, accumulations of large values, most
notably of sum-of-squares in variance calcula-
tions, is in danger of overflowing, again, yield-
ing invalid results. Neither of these problems
occur in GPSS/PC. In a sense, the user inter-
face has been cleaned of the need to be con-
cerned with these exceptional conditions.

“Unlimited precision” integers have several
other effects on the user interface. First, data
typing for GPSS numerical elements is re-
duced to a single type. It is no longer neces-
sary to specify a type for each numeric item.
Second, the need to predict the maximum
value of data items is removed.

With the introduection of “unlimited” precision
integer values, GPSS/PC™ eliminates many of
the worries about data types while providing
internal calculations numerically superior
even to double precision floating point arith-
metic. If all the memory in the computer has
not been used, there is no limit to the size of
the integer values. The dangers of clock under-
flow and overflow in the statistics accurnula-
tors, exist in systems with floating point sys-
tem clocks, but not in GPSS/PC™. For any
choice of tirne granularity there is no possibil-
ity of underflow or overflow in the system
clock.

To reduce the level of system knowledge
needed to access sophisticated mathematical
algorithms, GPSS8/PC has integrated a rich
mathematical library into the GPSS language.
Complex expressions can include SNAs (Sys-
tem Numeric Attributes), exponentials, logar-
ithms, trigonmetric functions, and logical op-
erators. This allows probability functions in
closed form to be included as GPSS variable
entities. Similarly, GPSS/PC canbe used to sim-
ulate continuous state systems using any of
the commonly used integration techniques.

Some other unnecessary aspects of tradition-
al GPSS dialects have been removed. Dynamic
allocation of entities and transaction param-
eters removes most of the individual entity
count limits from the user interface. The old-
er, more uniform method of indirect address-
ing through a parameter is retained in GPSS/
PC. Also, the unnecessary distinction between.
System Numeric Attributes and System Logic
Attributes is removed.

Finally, an operand-specific help screen is
available for each operand in the language.
The correct syntax and the valid forms for any
operand can be called up on the screen by a
single [?] keystroke.

Uniphasic Simulation Environment, the
“Session”

GPSS/PC combines all phases, except report
printing, into a single phase called a session.
The processing required by the compilation-
link phase is completed incrementally as each
staterment is scanned. Most sessions start
with the scanning of a program file, which is
the ASCII representation of a set of line num-
bered statements. By the time the program file
has been completely read, the data structures
representing the model have all been built in
the main memory of the personal computer.

Letus take amoment to review the multiphas-
ic operation depicted in figure 1. By following
the course of action required for development
of a simulation. in the upper diagram, we see
how unnecessary tedium is introduced when
an error is detected, analyzed, and repaired.
This task, which should be as immediate as
possible, requires that several phases be en-
tered and exited. Not only does each phase
transition require several seconds, but the
phases themselves may requires several min-
utes as is the case with a long compilation. In
many cases, the user must direct these ac-
tions, thereby losing much of the original
mental context he/she had when the offending
statement was created.

MULTIPHASIC SIMULATION

EDIT H COMPILEILIN?HEUN/DEBUGJ‘ PL‘?T

DATA
REDUCTION

UNIPHASIC SIMULATION

LOAD
EDIT
RUN/DEBUG
PLOT
SHOW

4= SESSION =p

Figure 1

Simulation Phases

In the top half of figure 1 we see the sequence
required of a. multiphasic simulation environ-
ment. This sequence is our heritage from the
first programming languages. In order to
even begin a simulation, one or more pre-
liminary phases must be entered. Generally,
the creative activities of model building are
done in phase 1, but the corrections to errors

548

must be conceived much later, out of the origi-
nal context. Even if the original error is cor-
rected, it is easy to introduce new errors be-
cause the mental context under which the the
original model was composed hashad time to
deteriorate. In addition, theé time required to
correct each problem is extremely long, each
requiring a passage through several phases.

Contrast that to the uniphasic design of GPSS/
PG depicted in the bottom half of figure 1.
Remember that syntax errors are not even
accepted. Errors that do get into the environ-
ment are detected at run time, during a sim-
ulation. In the uniphasic design, simulations
can be started immediately. When an error is
detectedq, the simulation stops and a diagnos-
tic message is printed on the screen. At that
instant, the analyst can explore the state of
the simulation, manipulate transactions in
manual simulation mode, or make structural
changes to the model. He/she may then im-
mediately resums the simulation using the
corrected model.

Error Prevention

When GPSS/PC™ scans a statement, a syntax
directed statement parser courses through a
state diagram as keystrokes are being in-
corporated into the current statement. In-
valid syntax is not admitted into the simula-
tion environment. If a keystroke is made
which cannot possibly lead to valid syntax,
GPSS/PC sounds an. audio signal, places an
error poinfer on the screen, and rejects the
keystroke by neither echoing nor incorporat-
ing the character.

The first step in screening keystrokes is to
classify the keystroke into alphabetic, numer-
ic, special, delimiter, and {CR] (“enter” or “re-
turn”). Only key classes represented in af
least one valid operand are admitted past the
screening test. Other keystrokes are rejected
immmediately without further testing.

I the class of the character includes valid
posgibilities, the keystroke is tested according
to state-specific criteria. To do this the GPSS/
PC statement parser is at all times in exactly
one state of a complex finite state diagram.
Each keystroke of the user is tested to see if it
calls for & valid state change. This process is
depicted in figure 2. In this figure, we see a
detail of the state diagram which represents
the valid grammar for a GPSS block statement
operand.

The validity of each keystroke is determined
by calculating the union of two flag fields
which have as elements flags which represent
GPSS operand forms. The first flag field con-
tainsg truth values representing valid operand
forms for the block (or statement) type and
operand number. For example, the A operand
field for ADVANCE blocks has flags set for the
flag for names, for nonzero positive integers,
for indirect addressing forms, and so on.
Those forms which are not valid in operand A
of ADVANCE.have an associated flag which. is
not set. This first flag field is the “Permissible
Set”.

Springer Cox

The second flag field used in the calculation
contains flags which represent which op-
erand forms can still be attained by the user,
assuming there isnobackspacing. As the user
presses more keys, valid transitions in the
gtate diagram causes flags in the “Achievable
Set” to be effectively turned off. The represents
a decrease in the number of forms still possi-
ble. By the time a valid operand is specified, all
posgibilities but one have been ruled out.

The validity of state transitions is tested by
calculating the intersection of the Permissible
Set and the Achievable Set. Before a keystrokeé
is accepted as valid, if a state transition is
triggered by the keystroke, the intersection of
Permissible Set of the operand and the Achiev-
able Set of the new state must not be null.
When it is null, it mmeans that there are no
valid operand forms that can be reached by
additional keystrokes. Therefore, this condi-
tion is not allowed, and any keystroke leading
to it is rejected.

For example, let us consider two cases in
which theuser is attempting to enter thevalid
form

*45

In GPSS, this is a form of indirect addressing
which takes the value of parameter number
45 of the active transaction. Let us consider
the case when the operand is entered correct-
ly. We assume that the verb (e.g. GPSS block
name) of the statement has already been iden-
tified and that the Permisgsible Set for this op-
erand has been identified. The operand read
routine starts in state 1, as is depicted in fig-
ure 2. When the [*] key is pressed, it is classi-
fied as a special character and admitted to the
state-specific testing. A reference to the state
diagram determines that if valid, the key-
stroke will lead to transition to state 2. State 8,
as are all states, is associated with an Achiev-
able Set, which represents all operand forms
distal to state R in the grammar tree. Bach leaf
in the state diagram which can be reached
from state R is a possibility for the operand
under construction. The intersection of the

1 2

A ,[CR]
AITG

a $ 12 |
8 SD # hame
,[CR] ‘b\
13
¥ n

Figure 2

Detail of GPSS/PC Grammar

The User Interface of GPSS/PC

permissible set for the current operand and
the Achievable Set for state 2 is calculated. If it
1s null, there is no valid operand that can be
reached if the current keystroke is accepted.
However in the present case the form repre-
sented by state 13 is in both sets. The [*] key-
stroke is therefore accepted and incorporated
into the statement, and the parser enters state
2.

Similarly a limited sequence of digits are
accepted, promoting the parser to state 8.
When a delimiter key is pressed, indicating
the user’s desire to complete the operand, a
final test of the terminal state number 13
leads to acceptance of both keystroke and op-
erand.

Now let us consider the case where the user
incorrectly presses the key sequence

*4B

In this case the parser begins in state 1, as
before. The valid keystroke [*] promotes the
parser to state 8, and the keystroke [4] pro-
motes to state 8. Both keystrokes are accepted
and incorporated into the statement. How-
ever we now incorrectly press the invalid {B]
key. In this case, no valid transition (includ-
ing back to state 8) is associated with alpha-
betic keys when the parser is in state 8. The
keystroke is therefore rejected.

If this statement operand was associated with
a Permissible Set which did not allow indirect
addressing forms, the [*] keystroke would be
rejected when the intersection of the Permiss-
ible 8et and the Achievable Sst was calculated
Just before the transition from state 1 to state
R.

Mutability of the Environment

The simulation environment must respond to
the whim of its master. Ideally, single actions
should allow the analyst to explore and mod-
ify the simulation environment. However, we
are just beginning to see these design princi-
ples enforced in commercially available sim-
ulation systems.

The earliest appearancs of interactive simula-
tion controls, was that of debugging com-
mands. These generally provided the user
with the ability to stop the simulation at
specific points, and to trace details of the sim-
ulation, and to cause the simulation to pro-
ceed in a step-wise fashion. GPSS/PC includes
these older methods as well as several new
ones.

The first level of modification available to us-
ers of GPSS/PC is the ability to change named
values. At any time during the session, named
values except block locations, can be changed
by interactively entering an EQU statement.
This flexibility is a strong motivating force for
using only symbolic, not literal, numeric con-
stants in a GPSS program. Then, the dynamic
effects of numeric changes can be viewed easi-
Iy during a running simulation.

Keyboard

Keyboard

Figure 3

Manual Simulation

The second level of modification involves the
structure, itself, of the model. GPSS/PC™
allows GPSS blocks to be deleted, replaced, or
inserted in the middle of a simulation. Thisis a
much higher level of mutability than hasbeen
available before, and it carries with it the re-
sponsibility of understanding what the effects
of the changes will be. For those users who
venture into it, the debugging time of model
development will be drastically reduced.

The last new level of modification is given the
name “manual simulation”. In a truly interac-
tive environment, the user musthave full con-
trol. To this end, GPSS/PC brings all the sim-
ulation primitives (block statements) access-
ible to transactions deep in the simulation, up
to theuser interface. The statements maynow
be entersd as keyboard commands. Manual
simulation is depicted in figure 3. The auto-
maeatic, non-manual mode of simnulation is de-
picted in the upper half of the figure. In this
case, after the structure of the model has been
described by line-numbered block statements,
a START, STEP, or CONTINUE command
causes block entries to ocour until the stop-
ping condition is detected. Control of each
block entry resides within the transaction
scheduler.

AUTOMATIC SIMULATION

549

START > TRANSAGTION SCHEDULER
STEP
Entry =

CONTINUE - -
2 » GENERATE
% el rovance
w
=
I~ TERMINATE
(4]
<

CEC

MANUAL SIMULATION

8LOCK TRANSACTION SCHEDULER
STATEMENT
Entry ’5
<
< GENERATE
> ADVANGE
=
Q TERMINATE
CEC

Manual simulation is depicted in the bottom
half of figure 3. Any time after a sirmulation
has been begun, it may be stopped or inter-
rupted. Manual simulation requires that an
“active transaction” has been previously
selected, and set up on the CEC (Currents
Event Chain) by the transaction scheduler. In.
the most trivial case, & STOP condition may be
set for the very first transaction. When the
simulation stops (or is interrupted), manual
simulation statements may be entered in the
form of unnumbered block statements. Bach
manual simulation statement causes a tempo-

550

rary block to be created. The active transac-
tion then attempts to enter this block. In this
process, the old block for which the active
transaction was scheduled is saved. If the
manual simulation does not displace the
transaction to a new destination, the original
“next block” is restored to the active transac-
tion. A long sequence of blocks can be in-
‘troduced in this manner. However, if the ac-
tive transaction is-placed on a delay chain or
is otherwise removed from the CEC, the
transaction scheduler chooses a new transac-
tion as the active transaction.

Manual simulation presents a great variety of
new posgibilities to sirnulation analysts. In
real world applications, these pogsibilities re-
main. largely unexplored. ¥rom the point of
view of control, it enriches the user interface.
From the pointfo view of exploration, it places
amagnifying glass on. the active transaction.

Figures 4 & 5 show the richness and im-
mediagy of the user interface when the sim-
ulation primitives are accessible during the
run phase. In figure 4 the remoteness of the
multiphasic design is depicted by the com-
partmentalization of functions in each phase.
Parts of the user interface expressed in one
phase are inaccessible in other phases. Also, a
mental modality is induced on the user who
must always know which phase he/she is in.
Figure 5 depicts some of the advantages of the
uniphasic design. All functions are always
accessible, and the user must be familiar only
with a single, highly-integrated environmens.

Springer Cox
SESSION
LOAD EXISTING PROGRAM
CHANGE VALUES
INSERT BLOCKS
START
GENERATE
ADVANGE MANUAL SIMULATION
TERMINATE
STOP/STEP
PLOT
Figure &

Simulation Primitives on the Session Interface

PHASE 1 PHASE 2 PHASE
>EDIT > COMPILE/LINK > RUN
GENERATE STOP
ADVANCE STEP
TERMINATE
START
Figure 4

Primitives on Phase 1 Interface

Manipulation of a simulation serves to
strengthen the intuition of the analyst. Not
only can the dynamics of the simulation be
observed, but aiternate designs can be partial-
1y explored without having to leave the run
time environment. Since the overall value of a
simulation study improves with the richness
of the set of design alternatives, the intuitive
side of the simulation' process must not be
neglected.

There are several points that must be kept in
mind, while modifying running simulations.
First, when one manipulates a running sim-
ulation, the homogeneous conditions required
for statistical treatment of the results may no
longer exist. Further, changes to the structure
of the-model may change the standard output
reports. It will usually be necessary to know

what changes were made in order to correctly
interpret the. simulation output.

Conclusions.

The highest design goal of GPSS/PC™ is that of
immediacy. In application, this means that
user errors are detected and remedied as soon.
a8 possible and that the simulation environ-
ment is immediately responsive to inqguiry
and manipulation.

The user interface of GPSS/PC offers a new
level of interaction between the analyst and
the simulation. The single phase session
squeezes much wasted time out of the develop-
ment cycle and reduces the probability of new
errors caused by fixes to old problems. This is
possible because GP3S/PC provides for altera-
tion of named values, and for alteration of the
model's structure in the middle of a simula-
tion without the need for recompilation.

The new level of controllability of the simula-
tion made available by the manual simulation.
mode of GPSS/PC gives the analyst the power
to manipulate transactions with the same
primitives that exist deep within the simula-
tion. In effect, the simulation primitives have
been. brought up to the user interface. This
level of interaction readily reveals the dynam-
ics of the simulation, but it also demands a
clear understanding of the simulation in
order to be used without error. There are
many opsn design questions related to this
new interactive environment. It is theusers of
the simulation environment who will lead the
way.

The User Interface of GPSS/PC

Reference
Henriksen, James O. 1983. The Inte-
grated Simulation Enviornment (Simu-
lation Software of the 1990s). Opexr-
ations Research vol. 31, No. 6, pp-.
1053-1073.

551

