Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

DISCRETE EVENT SIMULATION IN PASCAL WITH SIMTOOLS

Andrew F.
Department of Management Sciences
and Information Technology
College of Business Administration
University of Georgia
Athens, GA 30602 U.S.A.

ABSTRACT

SIMTOOLS 1is an integrated collection of
procedures and functions which allow one to
write discrete event simulation programs in
Pascal using the event view. Facilities are
provided for generating random variates,
creating and deleting entities, managing
resources, list processing, scheduling,
cancelling, sequencing and executing events,
tracing events and collecting data. This
paper describes the structure and
capabilities of SIMTOOLS, and presents an

example simulation using SIMTOOLS.

1. INTRODUCTION

SIMTOOLS is an integrated collection of
procedures and functions which allow a Pascal
programmer to write discrete event simulation
programs using the event view, or event
scheduling approach. This paper presents a
brief review of the facilities in SIMTOOLS.
For a more detailed description, refer to the
SIMTOOLS User's Manual (Seila, 1986).

Facilities are provided in SIMTOOLS for:
- Generating random variates.
Declaring entities and attributes.
Creating and deleting entities.
Inserting entities into and removing
them from lists (queues).

Declaring and managing resources.
Declaring event notices.

Scheduling and cancelling events.
Sequencing and executing events.
Tracing events.

Collecting data.

Version 1.0 was developed with the following
objectives:

1. Data structures are simple.

2. Procedures and functions are simple
and descriptive, and have few
parameters.

3. The simulation program is self-
documenting as far as possible.

4. Standard Pascal is used.

5. The internal mechanics of list-

processing, data collection, tracing
and other operations are transparent
to the user.

141

Seila

2. PASCAL RNOWLEDGE REQUIRED

The
programmer,
types real,
and subrange.

SIMTOOLS user, as any Pascal
must be familiar with the simple
integer, char, boolean, scalar

The structured types ARRAY and
RECORD, including record variants, are also
used extensively in declaring entities and
event notices. Xnowledge and use of pointers
and dynamic records is also required. The
user does not need extensive experience with
FILE types, other than standard text files,
since they are not used by SIMTOOLS.

A simulation program using SIMTOOLS, just
like any other complex program should be
developed and written using topdown design.

This means that the program should be
extensively structured using procedures and
functions. The user must be very familiar

with procedure and function declaration and
execution, and parameter passing conventions,
including passing of procedures. The
effective use of SIMTOOLS will be greatly
enhanced by the user's ability to structure
the simulation program using procedures and
functions.

The SIMTOOLS user should, in short, be an
experienced Pascal programmer. A good text

is Programming in Pascal, Second Edition, by
Peter Grogono (Addison-Wesley, Reading,
Mass., 1983). Chapters 1 through 6 and 8

through 10,
are recommended along with the experience

omitting sections 10.5 and 10.6,
of

writing several nontrivial Pascal programs.
A good one-semester course in introductory
programning with Pascal is sufficient
background.

3. RANDOM VARIATE GENERATION

SIMTOOLS contains routines for generating
random variates from a number of different
distributions. These random variate
generators support multiple streams of random
number seeds and can be logically divided
into three groups:

1. Routines for managing the streams of
seeds;

2. The random number generator;

3. Routines for generating random

variates from various distributions.

A procedure, etseeds, will read in a
specified number of random number seeds and

A. F. Seila

initialize the seed streams with them.
Function seed will return the current seed in
a specified stream.

The random number generator, which is in
function rando0l, is a prime modulus 32-bit
multlpllcagive congruential generator using
modulus - 1. This generator has been
tested exhaustlvely by Fishman and Moore
(1984), using both geometrical and
statistical tests, and has been shown to have
quite good properties if the appropriate
multiplier is used. Fishman and Moore list
ten of the best multipliers. Of these ten,
the multiplier 742938285, was implemented
because it performed as well as or better
than the other multipliers.

Currently, SIMTOOLS has functions for
generating random variates from the following
distributions:

Continuous: Discrete:
Uniform Empirical
Exponential Bernoulli
Erlang Binomial
Normal Poisson
Lognormal
Triangular

In addition, a function is available which

returns the boolean values true and false
with a specified probability, p, so that one
of two options can be selected with
probability p.
4. ENTITIES AND LIST PROCESSING

The RECORD type is wused to implement
entities. In an entity record, each field
represents an attribute of the entity. Any

system will generally have several types of
entities and multiple instances of entities
of each type. For example, in a simple
queueing simulation, there are two types of
entlties; customers and servers, and at any
point in time, there may be multiple
customers and multiple servers operating.

Each entity has two groups of attributes:
system-defined and user-defined. System-
defined attributes are required by the
SIMTOOLS package to identify entities, allow
them to belong to a list, and to permit other
operations performed by the package. The
user is never required to (and indeed should
not) reference these attributes directly.
User—-defined attributes may be declared for
each type of entity by inserting additional
fields in the variant part of the entity
RECORD declaration. The variant label serves
to specify which type ‘of entity the
attributes apply to, and the field
identifiers name these attributes.

Entities are normally classified into two

categories: permanent and temporary. This
distinction 1is implemented in SIMTOOLS in

the way the user declares an entity or group
of entities. Since permanent entities exist
for the duration of the simulation, they are
declared as an ARRAY (or other appropriate

structure) of entities.
on the other hand, are
that can be

One of the

static data
Temporary entities,
declared as dynamic records
created and deleted as needed.

strengths of using Pascal is that the
richness of data structures allows the
programmer to organize collections of
entities in any way desired.
4.1 Creating and Deleting Entities

Procedure create creates a new instance

of a specified type of entity, and procedure
delete deletes an existing temporary entity.
SIMTOOLS automatically counts the number of
entities of each type that have been created

and deleted. Functions entycreated,
entvdeleted and entycount return the

cumulative number of entities of a given type
that have been created, deleted, or are
currently in the systen, respectively.
Procedure nameentity assigns a 10-character
name to a specified type of entity. This
name, along with the sequence number assigned
to each entity created, 1is used to identify
the entity uniquely in any messages that are
printed.

4.2 [List Processing

List processing involves creating lists,
placing entities into 1lists and removing
entities from them. Other simulation

packages.and languages use the terms "files,"

"queues, " "sets," and "waiting lines" to
refer to lists. All lists are implemented by
SIMTOOLS as two-way linked lists, and all

list processing operations are performed
through procedure and function calls.

Before entities can be placed into a
list, it must be declared and created. A
procedure, setuplist, creates and initializes
the list. After this call, entities may be
placed into the list. SIMTOOLS has five
procedures that may be used to place an
entity in a list. Two of these, filefirst

and filelast, are used to place entities
first or 1last in the 1list. Two more,
filebefore and fileafter, place an entity

either before or after another entity in the
list. The last procedure, filepriority, is
used to place entities in a list ordered by
increasing value of an attribute. This
procedure can be used to maintain 1lists in
priority order, and by defining the priority
attribute carefully, it can be used to order
lists by priority within multiple categories.

Functions tell the status of a list and
give access to the entities in it. Functions
full and empty return boolean values

specifying whether the list is full or empty.
Function listcount returns the number of
entities currently in the list, and functions
first and last return pointers to the first
and last entities in the list.

Procedure remove removes an entity from
the list to which it belongs. The procedures
which place an entity into a list first check
to see if it already belongs to a list. If
so, they remove the entity from that 1list
before placing it in the new list. Thus,

Discrete Event Simulation in Pascal with SIMTOOLS

there is no need to first remove an entity
from a 1list before placing it in another
list. Note that SIMTOOLS does not allow
entities to belong to more than one list at a
time.

Another procedure, take, removes an
entity from a list and assigns it to another
entity pointer. Calling this procedure is
equivalent to first assigning the entity
pointer to the new variable (the pointer may
be the value returned by functions first or
last), then calling procedure remove.

Finally, SIMTOOLS also has a procedure,
search, for searching a list to £find an
entity that satisfies a user-defined
criterion. The user~defined criterion is

specified by passing to this procedure a
boolean function which evaluates whether an
entity satisfies the criterion and returns
true if it does, false otherwise.

5. RESOURCES

A resource is a particular type of entity
that other entities "use" during the course
of a simulation. Since resources interact
with other entities in a very specific way,
they were given a different treatment. In
general, a simulation may have several
distinct types of resources. For example, a
manufacturing plant may have presses, cranes,
rivets and oil. Each of these is a
particular type of resource. There may then
be multiple instances of each type of
resource. The manufacturing plant may have 3
presses, 2 cranes, 10 bins of rivets and 1
tank of oil. Then, each instance of the
resource will have a quantity of the resource
that is available to be used. The . presses
and cranes cannot be divided, so the quantity
of these resources at each instance is 1.
The quantity of rivets may be several
thousand at each location, and the quantity
of oil may be several thousand gallons.

Resource records have attributes (fields)
to store the resource's type, name and number
values. Each resource can be uniquely
identified by these three values. In
addition, the name, which is a 10-character
string, is used in trace output to identify
actions which increase and decrease the level
of the resource, or check the resource's
level. Resources are generally implemented
as permanent entities.

Three procedures are provided in SIMTOOLS
to manage resources. Two of them, increase
and decrease, increase and decrease the level
of the resource. The third, checkresource,
checks the level to see if a requested amount
is available and assigns the value true to a
boolean parameter if it is.

6. EVENTS AND THE EVENT LIST
The event view, or event scheduling
approach, is implemented in SIMTOOLS in the

usual way with an event list containing event
notices arranged in the order of the time of

143

occurrence. SIMTOOLS routines are available
to schedule and cancel event occurrences, and
perform other utility functions associated
with managing the event list. A timing
routine 1is provided to control the execution
of events.

6.1 Event Notices

Event notices are declared as records.
These records have fields in the fixed part
that specify the event type, tine of
occurrence, and other items of information
that are used in scheduling events. These
attributes are always assigned and used by
the routines that schedule and cancel events
and perform other actions involving event
notices. A variant part of the event notice
record stores the values of event parameters
to be passed to event routines. Some types
of events may not have parameters, and in
this case, the variant part of the event
notice will remain a null variant.

6.2 The Event List and Event Scheduling

The event list in SIMTOOLS is a
linked list containing event notices

two-way
ordered

by increasing values of the event time. When
the simulation program begins execution, the
event list, Jjust like other lists, does not

exist. Procedure getupsimulation creates the
event list, initializes it to be empty and in

addition performs other chores such as
setting the starting time to 0.0,
initializing the number of entities created,

deleted and in the system to 0, and assigning
blank names to all entity and event types.
Thus, procedure setupsimulation should be
called first in the initialization part of
the simulation program, before any names are

assigned, or events are scheduled. After
setupsimulation is executed, function

eventlist will return a pointer to the event
list and function now will return the current
system time. Another functien, delay,
returns a value which is a specified length
of time after the current system time and can

be used to schedule events after a specific
delay.

Once the event 1list is established,
events can be scheduled by inserting their
event notices in the event list. If the
event notice does not exist, procedure
dgenerate will create the event notice and

schedule the event. The event will be placed
in the event list according to the time of
the event, and the user can control whether
the event is scheduled before or after other

events with the same event time. If the
event notice exists, procedure gschedule can
be used to schedule the event. Thus, event

notices can be re-used. If an event is
scheduled, procedure reschedule can be used
to remove its event notice from the event
list, give it a new time, and schedule the
event at the new time. Procedure cancel will
remove an event notice from the event list,
thus cancelling the event occurrence.

is provided to
first event
The

A procedure, findevent,
search the event list for the
notice for a particular type of event.

A. F. Seila

procedure can start searching the event list
.at the beginning or at any specified event
notice, and thus can be used to locate any or
all scheduled events of a particular type.

6.3 The Timing Routine

The timing routine, which is procedure
‘runsimulation in SIMTOOLS, 1is the Yheart" of
a discrete event simulation. It is this
routine, along with the event routines that
‘move the simulatioh through time and causes
the correct sequence of changes in the
system. Procedure runsimulation will let the
simulation run until either a specified
length of time has elapsed, or until there
are no more event notices in the event 1list.
The simulation may also be stopped by calling
procedure stopsimulation. After
stopsimulation is called, any attempt to
schedule events by calling schedule, generate
or reschedule will have no effect. The next
statement executed after the simulation stops

is the one following the runsimulation
statement. '
The system must be initialized to its

startlng state before procedure runsimulation
is called. Initialization involves calling
setupsimulation to create the event list,

creating all 1lists and other dynanmic data
structures in the system, initializing system
attributes, and scheduling at least one
event. Once the system is initialized,
runsimulation performs the following actions:

1. If the duration of the segment is
positive, schedule an event to end
the segment.

Repeat the following:

2. Remove the first event notice on the
event list. This becomes the event
notice of the current event.

3. Update the system clock to the time
on this event notice. Procedure now
will return this time.

4. Execute the event routine corres-
ponding to the event notice.

5. If the event notice was not

rescheduled, then dispose of it.

Until the end of segment event notice is
removed or the event list is empty.

When the timing routine finishes
execution, the system state (all entities,
attributes, list memberships, lists,
resources, etc.) is not destroyed or altered.
This allows the, simulation to be run in
segments.

Function curientevent returns a pointer
to the event notice of the current event.
This is useful to access the event parameters
on the current event notice, or to re-use the
current event notice to schedule another

144

event occurrence. Function eventlist returns
a pointer to the event list. Although this
is normally not used, it is useful when
calling procedure findevent to start
searching at the start of the event list, and
possibly in other cases when the event
notices in the event list are to be accessed.
Function nextevent returns a pointer to the

first event notice on the event 1list, and
function eventsremaining is a boolean

function which tells whether the event 1list
is empty or not.

Sometimes, it is useful to '"disable"
events, so that they will not occur, even
though they are scheduled. For example, if
an automatic teller machine is being modelled
and there is a period of time when the
machine is inoperative, we would want
transactions during this time period not to
be processed. This could easily be done by
"dlsabllng" the event that starts transaction
processing at the start of the inoperative
period, and "enabling" it at the end of this
period. Two procedures are provided to allow
events of a specific type to be "disabled"
and "enabled." Procedure enable "enables"
events and procedure disable "disables" them.
At the start of the simulation, all events
are “enabled". Function occurflag can be
used +to determine if a particular type of
event is "enabled" or "disabled."

6.4 Event Routines and Event Parameters

Associated with each type of event is an
event routine, which is a set of actions that
take place when that particular type of event
ocecurs. In order to implement the event
view, two things must be provided: a
mechanism for carrying out these actions, and
a mechanism for executing the correct event
routine when an event notice is removed from
the event 1list. The first of these is
accomplished by writing a procedure for each
event routine. This is called an "Event
procedure." The second is accomplished by
providing a procedure, doevent, which selects
and executes the appropriate event routine
and passes any required parameters from the
event notice to the event procedure. There
are many ways to pass this information.
SIMTOOLS stores the parameters on the event
notice, then when the event routine is
executed, passes the values of the parameters
directly to the event procedure.

'

7. EVENT TRACING

Facilities are built into SIMTOOLS for
producing a readable trace describing system
execution. This is an important part of any
simulation language because it allows the
analyst to follow system operation and verify

its correctness as it moves through time.
This section discusses facilities to turn
this trace on and off, what output is
produced, and procedures for generating
additional trace output to provide more
information.

Discrete Event Simulation in Pascal with SIMTOOLS

7.1 Routines for Controlling the Event Trace
SIMTOOLS includes three routines for
managing the event trace. Procedure runtrace
turns on the automatic trace for a specified
number of events, or indefinitely. A call to
procedure stoptrace turns the trace off and
ends trace output. Function trace returns a
boolean value telling whether the trace is
currently on or not. When the event trace is
activated, one line is produced at the start
of each event that gives the current system
time, the name of the event, if a name has
been assigned, and a message indicating that
the event is starting. Within each event, a
message (usually one line) is produced when
any of the following occurs:

- An entity is created or deleted.

A list is created and initialized.

An entity is placed in or removed from
a list.

A list is searched.

A resource is initialized.

A resource is increased, decreased or
checked.

An event is generated, scheduled,
rescheduled or cancelled.

The event list is searched to find an
event notice.

The timing routine is executed.

The event trace is turned on or off.

Therefore, the standard trace output will
report most actions that relate to entities,
resources or events. An example of a
standard trace output, taken from a fuel
depot model in (Seila, 1986), is given in
Appendix A.

7.2 Additional Trace Output

The standard +trace output produced by
SIMTOOLS is frequently sufficient to assure
that the model 1is implemented correctly.
However, additional information is sometimes
needed about user-defined attributes, list
memberships, conditional actions and other
items of information that SIMTOOLS does not
provide directly. When this is the case, the
user must provide additional output
statements. Function trace provides a way to
produce trace output only when the trace is
turned on. If this is done, one does not
need *to remove the additional trace output
statements from the program in order to turn
all trace output off and proceed to make
production runs of the simulation.

Sometimes it is useful to print the
contents of a 1list in order to see which
entities are in the list. SIMTOOLS has a
procedure, showlist, which does this and also
allows the user-defined attributes of any

entity in the list to be printed when the
entities are listed. Another procedure,
showeventlist, prints information about all

event notices in the event 1list and can
include the values of the event parameters.

8. DATA COLLECTION

145

SIMTOOLS provides basic facilities for
collecting data and computing some sample
statistics. Since there are a large number
of ways to analyze simulation data, depending
upon the objectives of the analysis and the
nature of the data generated, a comprehensive

set of data analysis procedures would be
difficult to provide in a reasonable size
package.

SIMTOOLS does not have facilities for
automatic report generation. This omission
reflects the opinion that reports produced
without consideration of the nature of the

model and the simulation environment can be
misleading and indeed lead to erroneous
conclusions concerning the system. For
example, if the simulation run takes place
during a transient period, such as when the
amount of work in the system 1is steadily
building up, such figures as average number
of entities in a list are meaningless. If
the system is operating in a stable
condition, averages computed in the usual way
can be appropriate, but measures of
variation, such as the ordinary sample
variance, are almost always highly biased,
due to the correlation among cbservations.

Data collection facilities in SIMTOOLS
consist of a general data structure to store
accumulated observations for both discrete
and continuous data, and procedures to
initialize the accumulators and accumulate
sample statistics.

8.1 User-controlled Data Collection

Procedures resetsums and tally initialize
the data accumulators and accumulate sums and
sums-of-squares for discrete statistics,
respectively. Once the sums and sums-of-
squares , have been accumulated, functions
average and variance can be referenced to
compute the sample mean and sample variance
of the data.

Certain variables such as the the 1level
of a resource or the number of entities in a
list must be accumulated continuously over
time in order to compute time averages. In a
discrete event simulation, continuous
observations form a step function, since the
system changes only at discrete points' in
tine, and remains constant between these
points. In this case, accumulating the area
under the observation function becomes a
matter of adding up the areas of rectangles.

Procedure resetarea initializes the area
accumulators. Once resetarea has been
called, procedure accumarea may be called

just before each change to the variable to
accumulate the area. After the area has been
accumulated, function timeavg will return the
time average of the observed variable.

8.2 Automatic Data Collection

SIMTOOLS automatically collects summary
statistics on the following measurements:

- the number of entities in each list;
- the number of entities of each type
in the system;

A.F. Seila

- the level of each resource.

Thus, computing the time averages of these
quantities simply involves a call to
function timeaverade at the appropriate point
in the program. If data collection for these
quantities is +to begin at some point other
than the start of the simulation (which is
usually the case), procedure resetarea can be
called to reinitialize the data accumulators.

9. SIMTOOLS ADVANTAGES

Appendix B contains a simulation of a
multiserver queueing system, written in
Pascal using SIMTOOLS. This is a simple

model which has been used in many textbooks.
The version which is in the Appendix was
written to be directly comparable to the
example that was presented in the pamphlet "A
Quick Look -at SIMSCRIPT II.5," which was
distributed by CACI.

A careful study of the example in the
Appendix B shows that the simulation progranm
written in Pascal using SIMTOOLS is very
readable and self~documenting. A programmer
can write programs using SIMTOOLS that need
very 1little documentation within the program
code (in comments). This can also be said of

languages such as SIMSCRIPT II.5, but can
certainly not be said of FORTRAN.

Most simulation programs are quite
complex. The simple example in the appendix

would most likely never be used in pratice.
Realistic simulations involve tens-of-
thousands of 1lines of code. Thus, any
approach to developing the simulation program
should allow the programming team to organize
the task of designing the program. Although
a top~-down approach can and should be
employed with any language, some facilitate
using this approach more than others.
Pascal, in particular, greatly facilitates
the use of top-down design, and helps
organize the process of program development.
This is another advantage in using SIMTOOLS.

One philosophy that has been employed in
software development is that one should start
with a basic library of routines to do basic
activities in the program. Then, these can
be used to develop a library routines to do
more complex tasks. This library can then be
used to develop a library of routines to do

even more complex tasks, and so on, until the

tasks one wishes to perform can be done.
Kernighan and Plauger (1981) do an excellent

job of presenting this approach to software
development. This is the approach embodied
in simulation software development using
SIMTOOLS. The current package is a first-
level library. This can then be used to
develop a second-level library of routines

that are oriented toward a particular class
of systems. For example, one can use
SIMTOOLS to develop a library of routines for
manufacturing simulation. This library would
have facilities <for operating conveyors,
AGV's, and other equipment to move parts and
finished goods, as well as more specific
facilities for inventory management, parts

146

routing, assembly operations and other

processes associated with manufacturing.

Once this library is in place, it can be used -
to develop a package of routines for

manufacturing in a particular industry, such

as automobiles, or textiles.

One application of SIMTOOLS is SIMTOOLS/P
(Seila, 1985). This is a package of routines

which wuses SIMTOOLS to implement the process
view of simulation. In this implementation,
processes can be defined, initiated,

activated and terminated, and they can use
resources and facilities for periods of time,
or can wait indefinitely until a particular
resource of facility 1is available. The
package allows events to continue to be
scheduled as well as processes to operate.
Systems modeled using the process view can be

represented more naturally and succinctly

than using the event view.

REFERENCES

Fishman, G. S. and Moore, L. W. (1980) "An
Exhaustive Analysis of Multiplic§Eive
congruential Generators with Modulus 2 -
1, Technical Report, Curriculum in
Operations Research and Systems Analysis,

University of North Carolina, Chapel Hill,

NC.
Kernighan, B. and Plauger, K. (1981),
Software Tools in Pascal, Addison-Wesley,

Reading, Massachusetts.

Seila, A. F. (1985), "Implementing the
Process View in Pascal," Technical Report,
College of Business Administration,

University of Georgia, Athens, Georgia.

Seila, A. (1986), SIMTOOLS User's Manual,
Technical Report, Collége of Business
Administration, University of Georgia,
Athens, Georgia.

F.

AUTHOR'S BIOGRAPHY

Andrew F. Seila is an Associate Professor
of Management Sciences in the College of
Business Administration at the University of
Georgia. He received the B.S. degree in
physics in 1970 and the Ph.D. degree in

operations research in 1976, both from The
University of North Carolina at Chapel Hill.
Before joining the faculty at the University
of Georgia, he was at Bell Laboratories in
Holmdel, New Jersey. His current research
interests include all aspects of discrete
event simulation, including model development
and validation, and simulation output
analysis, especially analysis of multivariate
output data. He is a member of ORSA, TIMS
and ASA.

Andrew F. Seila

Department of Management Sciences
and Information Technology

College of Business Administration

University of Georgia

Athens, GA 30602

(404) 542-8067

Discrete Event Simulation in Pascal with SIMTOOLS

APPENDIX A: SAMPLE TRACE OUTPUT FROM SIMTOOLS

SIMTOOLS VERSION 1.0

(C) COPYRIGHT 1985 Andrew F. Seila

Tinme Event Action(s)

02-23-86
22:09:52

Run trace for 5 events.
Set up list Truck Que

1

0.737 Arrival

0.792 Arrival

0.846 Arrival

1.091 Pump endng

1.176 Refilling

Setup resource
Fuel
Setup resource
Fuel 2 with level 5.000
Generate new Arrival event at time
reset area accumulators.
reset area accumulators.
Reset sum accumulators.
Run simulation indefinitely.
Start event
Schedule Arrival at time 0.792
Create Truck 1
Check Fuel 1
12.05 requested;
10.00 available.
Insert Truck
Generate new Refilling event at time
Sstart event
Schedule Arrival at time 0.846
Create Truck 2
Check Fuel 1
5.99 requested;
Decrease Fuel 1 by
New level is 4.006
Generate new Pump endng event at time
Start event
Schedule Arrival at time 1.801
Create Truck 3
Check Fuel 1
7.20 requested; 4.01 available.
Insert Truck 3 last in Truck Que 1
Find next Refilling event.
Found one at time 1.176
Start event —-=—m-=me——aeo
Delete Truck 2
Search in Truck Que 1
none found.
Increase Fuel 1 by
New level is 101.201
Search in Truck Que 1
Found Truck 1
Remove Truck 1 from Truck Que 1
Decrease Fuel 1 by 12.052
New level is 89.149
Generate new Pump endng event at time
Search in Truck Que 1
Found Truck 3
Remove Truck 3 from Truck Que 1
Decrease Fuel 1 by 7.195
New level is 81.954
Generate new Pump endng event at time

1 with level 10.000

0.737

1 last in Truck Que 1
1.176

10.00 available.
5.994

1.091

Start event

1.779

2.076

END OF SIMULATION SEGMENT
Event Counts:

ID Name Count
[o] 0
1 Arrival 40
2 Punp endng 40
3 Refilling 5
4 o]
5 0

147

A. F. Seila

APPENDIX B: AN EXAMPLE SIMULATION PROGRAM IN PASCAL USING SIMTOOLS

{$title:'Bank simulation from A Quick Look at SIMSCRIPT II.5'}
PROGRAM banksim(input, output, simfile); -

{ The following are compiler directives to include the type
declarations file and two files containing the declarations
for the SIMTOOLS procedures and functions: }

{ In the declarations file, the following declarations are made:
A single type of entity, "bankcustomer," is declared to
represent a bank customer. This entity has a single attribute,
"atime", which contains the .customer's arrival time.
A single type of resource is declared to represent the tellers
in the bank. This resource has no user-defined attributes.
Three types of events are declared: "newcustomer," to denote the
arrival of a new customer; "finishbanking," to denote the end
of service at a teller; and "closebank," to denote the close of
the day and end of the customer arrivals. '"Newcustomer" and
"closebank" have no parameters. A single event parameter,
"customer," which is a pointer to an entity, is declared for
the "finishbanking" event.

{Ssubtitle: 'Simulation declarations.',$include: 'Bankdecl.dcl’'}

{$list~ Turn off the listing. }

{$subtitle: 'Event View declarations',$include:'evview.dcl'}

{$subtitle: 'RV Generation declarations',$include:'rvgen.dcl!'}

|
{$subtitle:'Simulation program.' }

{ Variable declarations for this simulation }

VAR dueue : listhead; { The queue for customers }
|

server : resource; { The tellers }
lambda, { Arrival rate }
mu, ‘ { Service rate }
daylength : real; { Length of day)
1qg, Average queue length }

R Average no. in system }
wq, Mean wait in queue)}
w : real:; Mean wait in system }
quewaiﬁ, Data record for wait in queue }
syswait : statistics; Data record for wait in system }

syscustnum : entitypointer; Pointer for number in system statistics

Event notice for first arrival event }
Event notice for bank closing event)}

firstarrival,
bankclosing : eventpointer;

e e T e T e Y e T e Lt Lt Nane)

PROCEDURE initializesystem;
{ Purpose: To initialize the system prior to starting the simulation. }
BEGIN
{ Assign names to each type of entity and event: }
nameentity(bankcustomer, 'Customer ');
nameevént (newcustomer, 'Arrival)
nameevent(finishbanking, 'Endservice!');
nameevent(closebank, 'Close Bank'):;
{ Create and initialize the queue: }

setuplist(queue, 'Queune Y, 1):
{ Initialize the server: }
setupresource(server, 'Server ',1,0.0);

{ Initialize the user-controlled data collectors: }
resetsums(quewait); resetsums(syswait);
{ Input two random number seeds: }
getseeds(input, 2)
END; { initializesystem }

148

Discrete Event Simulation in Pascal with SIMTOOLS

{ TForward Declarations for Event Procedures }

PROCEDURE arrival; FORWARD;

PROCEDURE endofservice(customer : entitypointer); FORWARD;
PROCEDURE closing; FORWARD;

PROCEDURE doevent(event : eventpointer) {PUBLIC};
{ Purpose: To select the appropriate event routine and
execute it, passing the event parameters. }
BEGIN
WITH event” DO CASE id OF
endsegmt : ; { Required by Event View Package. }
{ If event type is new arrival, execute procedure "“arrive': }
nevcustomer : arrival;
{ If event type is end of banking, execute procedure "endofservice": }
finishbanking : endofservice(customer);
{ If event type is bank closing, execute procedure "closing": }
closebank : closing
END { CASE id OF ... }
END; { doevent)}

{ Event procedure for the new customer event: }
PROCEDURE arrival:;

VAR person : entitypointer;
leavebank ¢ eventpointer;
gtime : real;

BEGIN

create(person, bankcustomer);
persont.atime := now;
IF server.unitsavail = 0
THEN filelast(person, queue)
ELSE BEGIN

Create a new customer)
Record the arrival time: }
Can service begin? }
If not, put customer in queue }
If yes, do the following: }
gtime := 0.0: Time in queue is 0. }
tally(gtime, quewait); Record time in queue statistics)
server.unitsavail := server.unitsavail - 1; { Take a server }
generate(leavebank, finishbanking, ({ Generate an end-of-service }
delay(rvexpon(1.0/mu, 1))); { event. }
leavebank”.customer := person { Put customer pointer on event notice }
END; { ELSE }
{ Reuse the event notice to schedule the next arrival after an
exponentially distributed delay time.
reschedule(currentevent, delay(rvexpon(l.0/lambda, 2)), after)
END; (arrival }

A o s

{ Event procedure for the end of banking event:)}
PROCEDURE endofservice(customer: entitypointer };
VAR nextcustomer : entitypointer:

leavebank : eventpointer;
eltime,
gtime : real;

BEGIN
eltime := now - customer+.atime; { Compute time in system for customer }
tally(eltime, syswait); { Record time in system statistics }
delete(customer); { Delete the customer)}
IF empty(queue) { Check for another customer in queue)}
THEN { Empty queue -- return the teller }
server.unitsavail := server.unitsavail + 1
ELSE BEGIN { Queue not empty -- start service }
take(first(queue), nextcustomer); { Take the first customer }
gtime := now ~ nextcustomer~.atime; { Compute time in queue }
tally(gtime, quewait); { Record time in queue statistics }
generate(leavebank, finishbanking, { Generate end-of-service event)}
delay(rvexpon(1.0/mu, 1)));
leavebank”.customer := nextcustomer { Put customer pointer on event notic
END { ELSE }
END; ({ endofservice)}

{ Event procedure for bank closing event: }
PROCEDURE closing;
VAR nextarrival : eventpointer;
BEGIN
{ Locate the next arrival event in the.event list }

149

A.F. Seila

findevent(nextarrival, newcustomer, eventlist);
{ Ccancel the event and dispose of the event notice }
cancel (nextarrival); dispose(nextarrival)
END; { closing }

{ Main Program: }

BEGIN
rewrite(simfile); page(simfile); { Use file "simfile" for output)}
runtrace(=100): { Turn on the event trace indefinitely }
initializesystem; { Initialize the system }

{ Write the report headings. }
writeln({ simfile, 'Simulation of a single~-queue multiple server system.');
writeln(simfile); writeln(simfile); writeln(simfile);

writeln(simfile,' No of Arrival Service Hours !,
'Avg Queue Avg No. Avg Time Avg Time'):
writeln(simfile,' Servers rate rate /Day ',

' Length In System In Queue In system');
read(server.unitsavail); { Read the number of sexrvers in the system.)}
REPEAT { Enter a loop for each set of parameters to be evaluated. }
{ Read the parameters. }
read(lambda, mu, daylength):
{ Schedule first arrival. }
generate(firstarrival, newcustomer, now):
{Schedule first closing. }
generate(bankclosing, closebank, delay(daylength)):

{ Turn over control to the timing routine. }
runsimulation(indefinitely);

{ At this point, the simulation has finished running. }
{ Compute and print the averages. }
custcount := listcount(queue);
accunmarea(custcount, queuer.data):;
lg := timeavg(queue~.data);
syscustnum := entystatistics(bankcustomer) ;
:= timeavg(syscustnum*.data);
wq = average(quewait);
w = average(syswait):
writeln(simfile, server.unitsavail:7,lambda:11:3,mu:10:3,
daylength:6:1,1g:11:3,1:10:3,wg:11:3,w:10:3);
{ Reset the data accumulators for the next run. }
resetsums(quewait); resetsums(syswait):
resetarea(syscustnum~.data); resetarea(queuer.data);
{ Read the next number of servers. }
read(server.unitsavail)
{ Continue the simulations until all data has been
" read on file “input%. }
UNTIL eof(input);
END, { program)}

150

