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ABSTRACT

In this paper we extend the method of control variates
the of
metamodel-—that Is, a muitivariate llnear model of selected

to estlmatlon 2 multiresponse slmulation
simulation responses expressed In terms of relevant decision
variables for the target system. For the case In which the
responses and the controls have a joint normal distribution,
we present control varlates polnt and confidence reglon esti-
mators of the coefficlents of a multiresponse metamodel,
and we descrlbe a procedure for testing a general linear
hypothesls about the metamodel. To quantify the max-
imum efficiency that 1s achlevable with a glven set of con-
trols, we introduce a generalized minimum varlance ratlo.
To measure the degradation in efficlency that occurs when
the optimal control coefficlents are estlmated, we formulate
a generallzed loss factor. An example illustrates the appll-

catlon of these results.

1. INTRODUCTION

Since the advent of the dlgital computer, simulatlon
has made possible the study of very large scale systems.
However, direct slmulation of a reallstic model of such a
system can stiil be prohibitively expensive, elther by requir-
Ing too many slmulation runs or by requirlng excessive run
lengths. A varlety of varlance reduction teehniques (VRTs)
have been proposed to Improve the efliclency of simulation
experiments; see Kleljnen (1974) or Wilson (1984) for a
comprehensive survey of these techniques.

In the simplest form of a slmulation experiment, we
assume that each of n slmulation runs produces an Indepen-
dent and ldentlcally distributed response Y whose mean p

E(Y) 1s to be estimated. The direct simulation estima-
tor of uy Is the sample mean response Y taken over all n
replications. Thls estimator Is unblased so that E(?) =

My, and It has varlance Var(?) = Var(Y)/n. The variance
reduction problem consists of ﬂnd‘lng another unbiased estl-
mator of gy with a smaller variance. The method of con-

trol variates 1s a VRT that explolts Inherent llnear correla~
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tlon between the target response Y and a concomitant out-
put varlate C (a “control”) that is also observed on each
run and that has a known mean pe. On the I*! run of the
simulation model, we compute the “controlled” response
Yi(¢) = Y; - ¢{C;— uc), thereby attempting to compen-
sate for the unknown estimation error Y;— fiy by subtract-
Ing from the -original response Y; a linear transformatlon of
the correspondlng known deviatlon Cj-— .. The “con-
trolled” estimator of uv Is simply the sample mean ?‘(qﬁ)
= Y-4(C-~ f1c) of these “controlled” responses.

For any fixed value of the control coefiicient @, the
controlled response Y(#) =Y — ¢(C-p¢) Is unblased with
varlance

Var[Y(¢)] = Var(Y) + ¢*Var(C) — 2¢Cov(Y, C). '(1)

The method of control varlates ylelds a variance reduction
relative to direct simulation If ¢ lles between O and
2Cov(Y, C)/Var(C). If the covarlance structure of the sys-
tem under study Is known, then calculus can be used to
determine the value of ¢ that minimizes (1). The optimal
control coefficlent Is § Cov(Y, C)/Var(C); and the
resulting minimum varlance achlevable with the control C
Is Var[Y(6)]
tion coefficient between Y and C. In general, § must be
estimated, and 1ts least-squares estimator, 3, 15 the sample
6, defined
‘When Y and C are jJolntly normal and the least-

Var(Y)(1-pgc), where pyc Is the correla-

equlvalent of the optlmal control coefficient,
above.
squares estimator 5 is used for 6, the varlance ratio

2 VarY(5 n-2
VR(3) = Yy _ [—-—-](1—,)50)
Var(Y) n-3
1s actally achleved with the control C. The factor

{(n—2)/(n—3) measures the loss of eficlency that results from
estlmating §&; see Porta Nova (1985),

In contrast to other varlance reduction techniques (for
instance, those that are based on the principle of Impor-
tance sampling), the method of control varlates does not
require manipulation or distortlon of the random number
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lnput process; Instead, this latter method Is based on obser-
vation of the natural dynamlc behavior of the slmulated
system. In a wide varlety of applications, the control vari-
ates technlque can yleld large varlance reductions with Httle
additlonal computing overhead. These conslderations sug-
gest that control varlates have great potential for actual
appllcation In simulatlon studles of real systems.

2. SETUP FOR METAMODEL ESTIMATION

2.1. Notation and Assumptions

Although we must Introduce some new notatlon to
accomodate our extensions of the control varlates tech-
nique, we have attempted to incorporate muech of the sym-
bollsm that 1s common to recent papers in the fleld—In par-
tlcular Lavenberg, Moeller, and Welch (1982); Nozarl,
Arnold, and Pegden (1984); Rublnstein and Marcus (1985);
and Venkatraman and Wilson (1988). For an sxt matrix A
= |lagll, we tet A, denote the I’ row vector of A

(1 £1<5s), and we let A.J denote the J™ column vector of
A (1 <)<t). Thus we have A [A.1 v A-:,]
[Avl o As.’]’. Also, vec(A) or vec A denotes the st-

dimensional

column vector obtalned by stacking the
columns of A respectively under one another to form a sln-
gle column: vec(A) vec A == [A-1I R A.t’]’. I¥BIis

a uxv matrix, then the right direct product of A and B is
the suxtv matrix

AB ... A,B
A®B = e
AgB - AGB

See Searle (1982) for an elaboratlon of these definltions of
vec(A) and A®B.

We assume that n Independent slmulation runs have
been performed in order to produce lndependent observa-
tions of each of the deslgn polnts of a chosen experimental
layout. For the I*! simulation run (=1, 2, ..., n), we deflne
the followlng quantitles: (a) a 1xm determinlstic vector Xi_

[Xizs os Xipp) Of declslon varlables or lnput parameters
for the simulation model, (b) 2 1xp random vector Yi.

[Xigr over Yip] of simulation responses, and (¢) 2 1xq random
vector Ci‘ = [Cyy, -es Cyq) of concomltant control varlables
with a2 known mean. Thus the nxm matrix X specifies the
entire experlmental layout, the nxp matrix Y represents all
the system responses of Interest, and the nxq matrix C
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contains all the Information about the relevant control varl-
ables observed during the experlment.

‘We make the followlng assumptions about the Jolnt
distribution of the responses and the controls. The control
vector Ci. observed on each run Is assumed to have mean
0,,4 and the same probabllity denslty functlon at all deslgn
polnts. Thls last property ensures that the covarlance
matrix Cov(Ci.) = 3¢ lIs positlve definlte (p.d.) and con-
stant across all deslgn polnts; see Porta Nova (1985). The
response Yi. Is assumed to be glven by the multivariate

llnear model Yi. XPQ + €., 1=1,..,n, where @ Is
the mxp matrix of unknown metamodel coefficlents and £,
Is a 1xp vector of errors with E(gi_) == lep, 1=1,..,n.
The covarlance matrix of Y, (and of £,.) 1s assumed to be
p.d. and constant across all deslgn polnts, Cov(Y, i.) = Ty
1=1, ..., n. The covariance matrix between Yi_ and Ci.
Is assumed to be const;a.nt across all deslgn polnts,
Cov(Y,, C,) p3

assume that the error ¢ o = Y1~ - Xp(-:) has a linear regres-

ey 1=1, ..., 0. Flnally we

slon on C(- WIth an unknown qxp matrix A of regresslon
(control) coefficlents and with a 1xp matrix of reslduals Ri.

so that the equatlon

Y =Xe+CA+R, 1=1,.,n,

(2)
Is a valld metamodel for the overall stmulation experiment.

2.2. Objectives
In this paper we present two sets of results:

Assumlng the validity of the model (2), we present the
followlng: (a) a generallzatlon of the minlmum varlance
ratlos formulated by Lavenberg, Moeller, and Welch
(1082) and Rublnsteln and Marcus (1985); (b) the least
squares estlmator A for the optlmal control coefficlent
matrix 4; and (c) the corresponding least squares esti-
mator &4) for the metamodel coefflelent matrix 9 in

().

‘With the additional assumptlon that the response vec-
tor Yl. and the control vector Ci. have a jolnt (p+q)-
dimensional normal distribution, we present the follow-
ing: (a) an exact 100(1-a)% confidence ellipsoid for
vec® centered at vec®(A); (b) generallzatlons of the

loss factors derlved by Lavenberg, Moeller, and Welch
(1982) and Venkatraman and Wiison (1986); and (c) a
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procedure for testing thé general llnear hypothesis
Hy: G vec@ == b, where G Is an sxmp matrix of full
row rank and b Is a glven sx1 vector.

To evaluate the performance of the estlmatlon pro-
cedures and efficlency measures derived under the normal-
ity assumptlion, we conducted an extenslve slmulation study
of the baslc experlmenﬁ descrlbed in the next sectlon. Some
of the numerical results of thls study are presented in Sec-
tlon 6.

3. DESCRIPTION OF AN APPLICATION

‘We will apply the methodology introduced In this
paper to an example that was origlnally presented by
Lavenberg, Moeller, and Welch (1982). The target system
conslsts of a closed queuelng network model representing an
interactive multlprogrammed computer system with multi-
ple customer classes and a subnetwork capaclty constralnt.
Lavenberg, Moeller, and Welch analyzed varlations of this
basic system In the context of a unlvariate response (p=1)
with multiple controls (q > 1), where the objective was to
estimate the overall mean response (m=1). In our contexs,
we seek to estlmate a linear model for a certaln perfor-
mance measure computed within each customer class
(p > 1), where the metamodel for each class Is expressed In
terms of several relevant system design parameters (m > 1);
moreover, we want to make efficlent use of all avallable
controls (q > 1). Figure 1 shows the particular queuelng
system to be analyzed.

SERVICE
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TER
CEN ! © SERVICE
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SERVICE
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SERVICE

CENTERS
e o et e ————

CAPACITY 'NO< N

Flgure 1: Computer System Model with
Subsystem Capaclty Constralnt

There are two classes of customers using the computer
with N(k) customers In class k, k=1, 2. Service center 1
has N(1)+N(2) servers representing the terminals, so no
queuelng occurs at center 1. The service time at center 1
repreéemss a customer’s “think” tlme at the terminal. Ser-
vice centers 3, 4, and 5 are single-server, first-in, first-out

(FIFO) queues that respectively model 2 central processor

3
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(center 3) and Its assoclated secondary storage devices
(centers 4 and 5). Centers 3, 4, and 5 constitute a subnet-
work with capaclty Nj, meaning that no more than N, Jobs
can be multiprogrammed by the computer system at the
same tlme. A class k Job that finishes service at center 3 Is
routed to service center J with probability pj(k), ‘where
k=1, 2 and j==1, 4, 5. Service times at center 3 represent
processing tlmes for Jobs. Service times at centers 4 and 5
represent times to access and transfer Information between
the main memory and the secondary storage devices. The
queue at service center 2 holds those Jobs walting to be
activated when there are alréady N, actlve jobs In the sub-
network. Center 2 represents a communicatlons processor
that holds Jobs untll enough maln memory Is avallable. At
center 2, class 1 jobs have higher priority and all service
times are ldentically zero. Table 1 summarlzes all of the
parameters describing this system.

Table 1: Parameters of the Computer System Model

Class k
1 2

Parameters

15 10

Number of Users N(k)

Routing probablilty p;(k) from center 3

to center } for class k:

p;(k) 0.2 0.2
D4(k) 0.72 0.4
ps5(k) 0.08 0.4

Mean service time Hjx &b center ] for class k:

yx 100.0 100.0
Hax 1.0 1.0
tax 0.694 0.694
Hsx 8.25 8.25

Subsystem capacity constralnt: Ny = 5

The- purpose of our slmulation experiment 1s to fit a
separate linear model to the mean response time for each
customer class In terms of three decision varlables: the
number of customers In each class and the capaclty of the
central processor subnetwork. A response time Is the delay
between the departure of a job from service center 1 and
the Job’s subsequent return to center 1. We are Interested
in exploring the reglon of the declslon space around the
point N(1) = 15, N(2) = 10 and N, = 5. The proposed
model Is & second-degree polynomlal In the decislon varl-
ables. To estimate thls model, we take 3 replicates of each
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. polnt 1n a slmple 3% factorlal deslgn. The values of each
declslon variable are coded as 0 (low level), 1 (intermedlate
level) or 2 (Ligh level). Table 2 summarlzes the experlmen-

tal design used to estlmate the blvariate model of response
tlmes.

Table 2: Experlmental Layout for the
Computer System Simulation
Orlginal Coded Symbol in
Declslon Values Valuest Blvarlate
Varlable Model
L I H|L I H
N(1) 12 15, 18 1 X,
N(2) 10 12 1 X,
N, 3 5 7|0 1 X,

{Each treatment combination Is replicated three times.

On the 1™ simulation run (=1, ..., 81), the proposed
model for the expected value of the vector Y, = [Yi, Yyl

of sample average response times for customer classes 1 and
2 1s glven by

Y. =X¢9 (3)
where X =
[1 X X Xig X X X3 XiuXie XX Xiexia]
and Q== H@”H Is the 10x2 matrix of metamodel

coefliclents. Thus In this example we have p=2, m=10,
and n==81.

To obtaln a more precise estimator of the postulated
bivarlate metamodel (3), we apply a set of standardlized
control varlates proposed by Venkatraman (1983). For ser-
vice center j and customer class k,

. 1/ e(i. k)
Ci(t) =1t 3 Ukt = B0/
1==1

where: k=1, 2 Is the Index of the customer class; ]=3, 4, 5
Is the index of the service center; g(J, k; t) Is the number of
service tlmes started at station } for customer class k dur-
Ing the simulated time Interval (O, t]; and U)y; Is the I™
service time sampled at statlon ) for customer class k,
where E(Ujx;) = #4) and Var(Ujy ;) = o%. Thus If T
Is a flxed slmulation ending time, then the vector of con-
trols observed at the I deslgn polnt Is glven by
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G, = e cim cim o cpm cium)]

where the {C(T)} are of course accumulated on the 1th
run. We do not use C;;(T) as a control because the
response tlme for a Job does not include the “think” time at
the termlnal. In contrast, the service times at the other
centers enter into the evaluation of the response tlmes; and
It is reasonable to assume that there will be some correla-
tlon between the response tlmes and the service times sam-

pled at centers 3, 4 and 5. Thus q=6 In this example.

4. SUMMARY OF NONPARAMETRIC RESULTS

In thils sectlon we present the results on controlled esti-
matlon of multiresponse metamodels that do not depend on
the assumptlon of jolnt normality for the responses and the
controls. In Sectlon 5 we summarize the maln results on
estlmatlon and hypothesis testing for multinormal metamo-
dels. Proofs of all of these results can be found In Porta

Nova (1985) and in Porta Nova and Wlison (1986).

4.1. Minimum Variance Ratio

In terms of the aggregate experlmental data matrices
X, Y, C, and g, the linear model that we are estimating Is
compactly expressed as Y X@+ ¢ . The deslgn matrix
X Is assumed to have full column rank m so that the

ordlnary least squares estimator of Q is & XXXy,
In terms of the vec operator, the covarlance matrix of @

can be convenlently expressed as

Cov(vecd) = Z,®X'X);
and this tmplies that the generallzed variance of @(é) is

[Cov(vecd®) | = | Sy |™|X'X |P.

To obtaln a more eficlent estimator for O, we attempt
to predlct the unobservable error ¢ In the response Y as a
llnear transformation C@ of the control C; thus the com-
ponent of ¢ that Is linearly assoclated with C can be
removed from Y before computing the least-squares estlma-
tor of @ For any fixed gxp matrix $ of control
coefficients, the controlled estlmator of Q1ls

&2) = (X'X)'X/(Y - C®),

which Is seen to be unblased with generallzed varlance
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| Covivee&®@)] | =
| By + 2'Bc®~ &' Zoy — Bve2 | ™ [ XX | P

For the optimal control coefiiclent matrix A = 55 'Sey, the
minimum varlance ratio Is

| Covivee®(a)] |

VR@) = | Cov(vec®) | h

[fm - pf)] . @
=1

where v denotes the rank of Dyc and {p;:] =1, ..., v} are
the canonlcal correlations between Y and C. This Is a
natural generalizatlon of the corresponding efficiency meas-
ures defined by Lavenberg, Moeller, and Welch (1982) and
Rublnstein and Marcus (1985). If v =0, then we take

[H(l—pjz)] = 1 In equation (4). For a univariate response
(p==1) with v = 1, we see that p, Is the coefficient of multl-
ple correlation between Y and C. The maximum percen-
tage reduction In generallzed varlance that can be obtalned
with the control C Is 100[1-VR(4A)]. Of course, we do not
know the optimal control coefficlent matrix A In -general,
and a loss factor Is required to quantify the subsequent per-
centage Increase In generallzed varlance that occurs when
the optlmal control coefficlents must be estlmated.

4.2. Least-Squares Metamodel Estimator

The procedure used to obtaln an estlmator for the
optlmal control coefficlent matrix A and to obtaln the con-
trolled estlmator for the metamodel coefficient matrix © is
a generallzation of the least squares (L.S) method based on
matrix derlvatlves. The LS estimator for 4 Is

A = (C'PC)YC'PY, where P = I - X(X'X)X'; (5)
and the corresponding estimator for © Is

&(A) = (X'X)X/(Y - CA). ®)
The controlled estimator (6) does not appear to resem-
ble the one descrlbed In our basic framework of Section 1,
namely 3_((3) Y- 3(.6 — lic). However, If we take Y =
Yy, .0 Yy, X = 1., (an nx1 vector of ones), and C
[Cy—tics s Cy—ticl, then we see that A &, the
sample covarlance between the {Y;} and the {C;} dlvided
by the sample varlance of the {C;}; and Q(é) ().
So, we see that (6) Is the direct generalization of the “con-
trolled” estlmator concept
Moeller, and Welch (1982).

Introduced by Lavenberg,

5. RESULTS FOR NORMAL METAMODELS

The nx(p+q) matrix Z Is sald to be normally distri-

buted with the mean matrix yg ||uij“, the covarlance
matrix between rows B = ”Sin, and the covarlance
matrlx between columns éz = ”Ein if: (a) each element
Z; Is normally distributed with mean E(Zy) == uj; (b) the

covarlance between Z,, and Z]_ Is Cov(Z , Zj_) = H;Zy for

1, =1, .., n; and (c) the covarlance between Z_k and Z.l

s Cov(Z.k, Z,) = Dy§, fork, I =1, .., p+q. We let
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Z ~ Ny piolliz: B Z2)

denote this matrlx normal distributlon. (See Section 17.2 of
Arnold (1981) for an elaboratlon of this definltion.)

For a slmulation experiment in which the response
matrix Y and the control matrix C Jointly possess a normal
distribution, we take Z (Y, C) so that B(Z) = gy
= (Uy: Opyg)r WIth gy == X@, and

_[&r gyc]
B = ey Zc |’

‘We assume that B and I, are posltive definlte. We also
assume that the rows of Z are mutually Independent slnce
they correspond to lhdependent simulation runs; thus we
take 8 = In in the followlng development.

Although we have derived the corresponding results for
the case when Ty Is known (see Porta Nova (1985)), In this
paper we conslder only the more realistic situation In which
Iy must be estimated. If Z ~ Npg,4(uz Iy, Zz) with
both © and Lz unknown, then we explolt the fact that the
conditional distribution of Y glven C Is matrlx normal,

Y|C~Ny, ot T Byuch WIth

— -1 _ —
Hy.c = Ky + Cgc gCY’ gy.c - .EY_ Z:.:YCECIQCY'

Thus by condltionlng on C, we see that the assumed linear
model (2) of Sectlon 2.2 Is In fact the correct model for the
matrix normal response Y, where: (a) the control coefflclent
matrix 1s &4 = E&'Bey; and (b) the resldual matrix R 1s

Independent of C with

R ~ N (Onr Ty 5,.0)-

5.1. Distribution of the Metamodel Estimator

Glven the control matrix C, the least-squares estima-
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tor §(4) 1s matrix normally distributed with

&4 | €~ NmpBhy.» BB, B, ), where

B = X'X)Ixr [In - C(C’PC)‘IC’P] . '

‘We have Bﬂy. ¢ = © showing the condltlonal unbiased-

ness of &A) glven C (and hence also the unconditional
unblesedness of &(A)). An unblased estimator for B, s

Zy.c = Y'(P-Q)Y/(n-m-q), and Q = PC(C'PC)C'P.

Conditioned on C, Y'(P-Q)Y has a p-dlmenslonal (central)
Wishart distribution with n-m-q degrees of freedom and
covarlance matrlx % .. Moreover, given C, (&) and By

are conditlonally Independent random matrices.

5.2. Variance Ratio and Loss Factor

Stacking the columns of the estimator &(A) Into the
mpx1 column vector vec&(A), we have:

n-m-1

XXy
—m—q—1

Varlvee&(A)] = (Ty -~ Eyczc?lzmr)®

‘When A must be estlmated, the actual variance ratlo is

VR(Q) =
| Var[vee&(Q))] | n-m—1 v m
= — | ] Ia-+?| . @
| Var(vecd) | n-m-q-1 =1
Thus, when we must estlmate the optimal control

coefficlent matrix 4, the actual varlance ratio VR(A) results
from taking the product of the minimum varlance ratio (4)
and the loss factor

= |

‘We see that If the number of replications Is very large rela-
tive to the number of parameters to be estimated
(n>>m+q), then the loss factor becomes unlmportant,
\ =~ 1. However, If n Is small relative to m-+q, then a net
varlance Increase (rather than a net varlance reduction) can
oceur.

®

p
n—m-1 ]
n-m-q-1

5.3. A Confidence Region for the Metamodel

Let V Z,..®BB'. From the results clted in Sec-

tion 5.1, 1t follows that

331

veel2) - O V7' veel@B) - @] | C ~Tm-ma), (9)
a Hotelling’s TZ—varlate with n-m-q degrees of freedom.
Thus, given C, we have:

(n—m~q)-mp-+1

F(mp,n-m-g-mp-+1),
mp(n-m-q) ( )

T2p(n-m-q) ~ (10)
an F-variate with mp degrees of freedom In the numerator
and n-m-g-mp-+1 degrees of freedom In the denominator.
Glven C, a confidence reglon for vec® wlth conditional
coverage probabillty 1—« is glven by
n—Mm~q-mp--1,, o
& ———— T2 (n-m—q) < F_, (np,n-m—-g-mp+1

{“ mp(n-m—q) P e )

(11)

with T,ﬁp(n—m—q) as defined on the left-hand side of (9)
above. Since thlis confidence reglon has exact conditlonal
coverage 1-a, 1t also has exact uncondltional coverage 1—c.

5.4. Hypothesis Tests on the Metamodel

‘We consider hypotheses of the the form H,: Gvec®
b, where G Is a known sxmp matrix of full row rank

and b Is a known sx1 column vector. We have
G vec@(é) -by(GVGE)IG vec@(é) -b] | C

T (n—m-q), (12)
a Hotelllng's T2-varlate with n-m-q degrees of freedom. A
statlstlc for testing the null hypothesis Hyis

(n—-m-q)-s+1

s(n~m—q) T (n-m~q) ~ F(s,n-m-q-s+1),

(13)
an F-varlate with s degrees of freedom in the numerator
and n-m-q-s+-1 degrees of freedom In the denominator.

6. RESULTS FOR THE APPLICATION

‘We performed the slmulation experiment descrlbed In
Section 3 using a dlscrete-event model written In the SLAM
I slmulatlon language (Pritsker (1988)). We executed the
experiment on a CDC Dual Cyber 170/750 computer, where
each run started with all users “thinking” at the terminals
and each run stopped after 1500 seconds of slmulated
operatlon. To reduce the Inltiallzation blas on each run, we
discarded the observatlons collected during the first 225
seconds of simulated time (15% of the run length). In gen-
eral, one would probably use longer runs and truncate a



A. M. de O. Porta Nova and J. R. Wilson

larger Initlal portion of each run. In any case, our objJective
was mainly to lllustrate the methodology developed in thils
paper.

6.1. Estimates of the Metamodel Coefficients

Table 8 displays the results for the dlrect simulation
estlmator © and for the controlled estimator &(A). Note
that these results are based on a single repetition of the
baslc 81-polnt experlmental design.

Table 3: Estimates of Metamodel Coefflclents
for the Interactive Computer System Simulation
Regression Direct Simulation Controlled
Coeficlents Estimator & Estimator &4)
Constant 5.748 21.828 4.137 16.123
X5 2,499 -731 2.458 599
X5 -.834 2.691 -.608 2.232
X3 1.926 1.614 521 -.340
X2 -.268 -.089 -.239 -.122
X2 .267 -.342 197 -.368
X2 -.012 -.388 -178 -425
XX, -.007 -.141 -.023 -.166
X Xa -.297 -715 -.183 -.399
oXq -.065 518 -.074 .367

6.2. A Test for Nonlinear Effects

Since we have postulated a blvarlate model of response
times that ls a second-degree polynomial 1n the declslon
varlables, we might want to test the statistlcal signlficance
of the two-factor Interactions and the quadratic effects in
the hypothesized model. In this caée, our null hypothesls is:

Hy: 9

pAN]

=0, forl=35,..,10 and )] =1, 2.

In terms of the formulation of Section 5.4, we have:

06><4 IG 06x4 06x6
G = )
06)(4 06x6 Oﬁx-'l IS
‘with s = rank(G) = 12, and b = 0,5,,. Evaluating

the left-haiid slde of display (12), we obtain T(n-m—q) =
T2(65) 13.833; and the F-ratlo (13) has the value
0.9577. Since the computed F-ratlo Is based on 54 degrees
of freedom In the denominator, we conciude that the non-
linear effects are negligible. Thus, we retaln only the con-
stant term and the first-order effects {X;, X,, X,} In (3).
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6.3. A Confidence Region for the Final Metamodel

Now we obtaln a confidence reglon for the flnal
metamodel coeficlent matrix ©. On the basls of the
hypothesls test descrlbed In the previous sectlon (which
indicates that only the constant term and the linear effects
In model (3) are nonzero), we seek to estimate the revised ©
uslng the 6 standardized control varlables defined In Sec-
tion 3 (namely, the standardized service times at service
statlons 3, 4, and 5 for classes 1 and 2). To avold uslng the
same data set for testing a model hypothesls and for
estimating the revised model based on that test, we have
independently repeated our 81-run simulation experiment
to obtaln the new polnt estimators given in Table 4.

Table 4: Final Estlmates of Metamodel Coefiiclents
for the Interactive Computer System Slmulation
Regresslon Direct Simulation Controlled
Coeficlentst Estlmator & Bstimator &(4)

Constant 9.671 20.159 10.422 19.257
X1 -.099 -.103 -.149 -.018
X, : .070 -.126 041 110
Xa . =370 401 -212 .380

tOunly the constant term and the llnear effects are included
in the final metamodel.

A 90% confidence region for © can be obtalned from

equations (9), (10) and (11). As Fg,(8,64) = 1.77 and
(n-m-g-mp+1)/[mp(n-m-q)] =  64/568, the 90%
confldence elllpsold centered at &A) Is
{Q : vee[&A) - @) V! vec[&(A)~ 6] < .15.68} ,
where 6(4) s glven in Table 4, and
V=
[127.0 7557 121.3 -304.0 -3.5 -208 -3.3  8.4]
4677.2 707.6 -1792.2 -20.8 -128.0 -19.5 49.4
217.9 -289.1 -3.3 -19.5 -6.0 8.0
768.3 8.4 49.4 8.0 -21.2
15.3 90.6 14.5 -36.4|°
560.7 84.8 —214.8
28.1 -—34.7
i 02.1]

Perhaps a more easlly Interpretable confldence region

results from computing simultaneous 90% -confldence Inter-
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vals on all metamodel coefficlents—that 1s, a confidence rec-
tangle for @. Such a confldence rectangle Is glven In Porta
Nova, (1985) and In Porta Nova and Wilson (1988).

7. CONCLUSIONS AND RECOMMENDATIONS

The minimum varlance ratlo (4), the varlance ratlo (7),
the loss factor (8) and the confidence elllpsold (11) all
appear to be falrly robust to departures from normality in
the simulation responses and/or comtrols. On the other
hand, the valldity of these quantitites seems to be highly
sensitive to the degree of heterogenelty of the response varl-
ance across the polnts of the design. See Porta Nova (1985)
and Porta Nova and Wllson (1988) for further discusslon of
these concluslons. A more

extensive experimental

performance evaluatlon Is needed to support any truly gen-
eral conclusions on these Issues.

As an extension to the framework discussed In this
paper, we recommend Investigation of some resampling
technlques (like Jackknifing) to provide distribution-free
resuits, for cases In which the assumptions regarding nor-
mallty and/or homogenelty of varlance are untenable.
Other possible extenslons Include the analysls of nonlinear
models and appropriate modifications of our procedures to
exploit any extra Information that Is avallable about the
covariance structure 3 of the target system.
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