Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

OBJECT-ORIENTED SIMULATION:
WHERE DO WE GO FROM HERE?

Jeff Rothenberg
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406, U.S.A.

1. OVERVIEW

Object-oriented simulation provides a rich and
lucid paradigm for building computerized models of real-
world phenomena. Its strength lies in its ability to
represent objects and their behaviors and interactions
in a cogent form that can be designed, evolved and
comprehended by domain experts as well as system
analysts. It allows encapsulating objects (to hide
irrelevant details of their implementation) and viewing
the behavior of a model at a meaningful level. It
represents special relations among objects (class-
subclass hierarchies) and provides "inheritance" of
attributes and behaviors along with limited taxonomic
inference over these relations. It represents
interactions among objects by "messages" sent between
them, which provides a natural way of modeling many
interactions. Despite these achievements, however,
there remain several largely unexplored areas of need,
requiring advances in the power and flexibility of
modeling, in the representation of knowledge, in the
integration of different modeling paradigms, and in the
comprehensibility, scalability and reusability of
models.

The Knowledge-Based Simulation project at Rand is
working in several of these areas. In this paper, we
will elaborate the existing limitations of object-
oriented simulation and discuss some of the ways we
believe the paradigm can be extended to surmount these
limitations.

2. BACKGROUND

Modeling is a way of dealing with things or
situations that are too costly to deal with directly.
Any model is characterized by three salient features:

1) It is of something (its "referent")

2) It has some intended purpose with respect
to this referent

3) It is more cost-effective for this purpose

than using the referent itself

The purpose of a model may be comprehension,
prediction, communication, appreciation, etc. It must
be more cost-effective to use a model for its given
purpose than to use its referent, either because it is
impossible to use the referent directly (e.g., modeling
the birth of a star) or because it is safer, more
convenient or cheaper (in some relevant coin) to use
the model. The criteria of purpose and cost-
effectiveness for that purpose determine the
appropriate level of fidelity of a model: they define
which features of the referent must be modeled (and
with what accuracy) and which features can be ignored.
The referent of a model must be well-defined; otherwise
the criteria of reference, purpose and cost-
effectiveness become arbitrary and meaningless.

‘state approach to work.

464

(Although it is not strictly necessary that the
referent actually exist in order to be well-defined, it
must nevertheless serve as "reality" from the
perspective of the model.)

There are many ways of modeling a given thing or
phenomenon; computer simulation forms a sub-class of
these that includes analytic and discrete-state
approaches. The analytic approach brings the power of
mathematical analysis to bear on problems that can be
understood or approximated analytically, but there
remains a large class of problems that are not well
enough understood to be handled this way. Such
problems typically involve collections of interacting
entities each of whose behaviors are understood
reasonably well in isolation and whose low-level
pairwise interactions with each other are known but
whose high-level group interactions cannot be grasped.
The strategy of discrete-state simulation is to encode
these low-level interactions and "run" them in the hope
that the overall behavior of the system will
approximate that of its referent, and (perhaps) that
higher-level interactions will reveal themselves. Such
models are normally used for comprehension or
prediction.

There are several requirements for the discrete-
The real-world entities being
modeled (along with their behaviors) must be
represented comprehensibly: the correspondence between
these entities and their representations in the model
must be obvious, and the representations of their
behaviors must be easily verifiable as faithful to
reality. The low-level interactions among entities in
the model must also be apparent: it must be clear which
entities interact with each other, under what
conditions they interact, and what their interactions
are. Finally, the dynamics of the simulation must be
comprehensible: it must facilitate perceiving and
understanding patterns of high-level interaction and
overall behavior of the collection of entities being
modeled. The evolution of discrete-state simulation
languages, from SIMSCRIPT (Kiviat 1968) and SIMULA
(Dahl 1966) to the present, has attempted to satisfy
these requirements with increasing success, leading to
the current object-oriented paradigm.

Object-~oriented simulation traces its roots to
SIMULA. Its modern form is represented by such
languages as SMALLTALK (Goldberg 1976), LOOPS (Stefik
1983), and ROSS (McArthur 1985). These languages
provide many improvements over their predecessors,
notably in the areas of lucid representation; however,
they still have many shortcomings. The following
sections discuss the major limitations of the current
paradigm and possible ways of extending it.




Object-Oriented Simulation

3. LIMITATIONS AND NEW DIRECTIONS

The current object-oriented simulation paradigm
has a number of serious limitations. Although these
invelve considerable overlap, they can be grouped
roughly into the areas: Modeling Power, Control,
Representation, Comprehensibility, and Model-Building.
3.1 Modeling Power

) Discrete~state simulations are severely limited in
the types of questions they can answer. Users
typically specify initial states of the simulated world
and then "run" the simulation to see what happens.

This corresponds to asking questions of the form "what
if?". As has been aptly pointed out in the literature
(Davis 1982, Erickson 1985), there are many other kinds
of questions that are of at least as much importance in
many situations. These include "why?" questions ("why
did Q happen?" or "why did object R take action S?7"),
"when?" questions ("under what conditions will T
happen?"), "how?" questioms ("how can result U be
achieved?"), "ever/never” questions ("can X ever
collide with Y?"), and optimization or goal-directed
questions ("what is the highest value Z will ever
reach?"” or "what initial conditions will produce the
highest value of 27").

The inability of current discrete-state simulation
systems to answer such questions derives from basic
limitations in their representdtional and inferential
capabilities. Representational limits include the
difficulty of modeling goals, intentions, plans,
beliefs and constraints (e.g., invariants). To the
extent that these can be represented at all in most
systems, they are often encoded implicitly in behaviors
(i.e., specified procedurally), and are therefore not
amenable to inference. For example, if an object's
intentions are only implicit in the code it executes,
it is theoretically difficult -- and practically
impossible -- to answer questions about those
intentions except by understanding the code. Answering
such questions requires more powerful methods of
representing knowledge.

If "inference" is defined in the most general
terms as the ability to draw implicit information from
explicit information, then running a traditional
discrete-state simulation (or indeed any computational
process) can be seen as one form of inference: an
‘implicit conclusion (the computational result) is drawn
from an explicit representation of the problem (the
program and its data). The object-oriented paradigm
also provides a degree of "taxonomic" inference based
on its representation of class-subclass hierarchies: if
x is a SwmallTruck and SmallTruck is a subclass of Truck
which is a subclass of MovingObject, then it can be
inferred that x is a MovingObject. However, the range
of conclusions that can be drawn by this means (the
"inferential closure" of the class-subclass taxonomy
under inheritance) is not very great. To answer the
kinds of questions outlined above, it is necessary to
’supply a simulation system with a richer set of
inference mechanisms which in turn access a richer set
of knowledge representations.

The kinds of inference and explanation techniques
that have been applied in expert systems define one
axis of extending the capabilities of simulation
systems. Such mechanisms (when coupled with
appropriate representations of behaviors, constraints,
etc.) allow the simulation to answer many of the
questions posed above. In addition, however, it is
important to avoid "discrete-state tunnel vision" which
excludes analytic and optimization techniques. In

465

cases where suitable analytic representations exist, it
should be possible to integrate them into a discrete-
state model, though current systems provide little or
no support for such integration. As is pointed out in
(Davis 1982) there are many cases where relationships
can be communicated more effectively by analytic
statements like "X increases when Y/Z decreases" than
by showing computational results. Discrete-state
techniques should be reserved for situations where such
analytic insight is not available or is inappropriate
for the intended application.

3.2 Control

In addition to the power of a system per se, there
is the issue of how easy it is for a user to exercise
that power. These issues are not entirely disjoint,
since many control limitations imply underlying
limitations of power or flexibility, as well. Control
is also intimately linked to the interface through
which it is exercised, and therefore involves issues of
interface design.

One of the major shortcomings of most simulation
systems is their inability to represent models with
different degrees of aggregation. It is often unclear
at the inception of a modeling effort what level of
aggregation will be most appropriate or useful; the
difficulty of changing this level after a simulation
has already been implemented is often insurmountable.
Beyond this, it is desirable to be able to build models
whose degree of aggregation can be varied dynamically
(either for efficiency or for conceptual purposes).
This requires the ability to define objects that
represent aggregates of other objects, where behaviors
and interactions are allowed at various levels in the
object hierarchy. Furthermore, this requires
addressing the problem of insuring consistency among
these levels so that (for example) a simulation can be
run at an aggregated level up to a given point and then
continued at a more detailed, disaggregated level in a
meaningful way.

A related limitation is the difficulty of
displaying results in usable form. Most object-
oriented simulation environments provide some degree of
graphic output to help visualize the workings of their
simulations, but the user rarely has much control over
the level of visual summarization or "abstraction".
‘Abstraction is the presentational dual of aggregation,
in that presenting the simulation in an abstracted form
can make it appear (at least for some purposes) to be
running at an aggregated level; however, here the
underlying behavior of the simulation can be kept
disaggregated, thereby avoiding consistency problems
between the levels.

Ideally, a combination of dynamic aggregation and
abstraction should provide the user with control over
focus of interest in the model, so that as the user's
attention is shifted or "zoomed" to different areas or
levels of the model, the desired degree of detail is
always available. This requires the ability to perform
"localized simulation", where the objects of interest
are simulated in full detail, but all other objects are
simulated at an aggregated or abstracted level. To
allow the user to "zoom" in on a simulation, it must
automatically change its level of aggregation and
abstraction to produce the required degree of detail as
needed, giving rise to what we have called "fractal
simulation".



J. Rothenberg

The user of a simulation often needs to run it to
a certain point and then try excursions, changing
various aspects of the simulation, backing up to
previous points and trying different paths. We have
called this kind of control "intelligent éxploration".
This requires that the system save its state
incrementally to allow backing up without recomputing;
efficient techniques must be developed for doing this
without inordinate overhead.

3.3 Representation

In addition to the need to represent goals,
intentions, plans, beliefs, constraints and behaviors
in ways that are amenable to inference (as noted
above), there are a number of other serious
representational limits that confront current systems.
These have more to do with the ease of comstructing
simulations than with providing power to the user, but
they are nonetheless crucial for creating more capable
modeling environments.

The object-oriented paradigm focuses on the
definitions of objects, each having various attributes
and behaviors and communicating with other objects via
messages. Objects are organized into one or more
hierarchies which are conceived as representing class-
subclass relations on the objects. This organization
focuses exclusively on the class-subclass relation,
with systems typically providing a built-in
"inheritance" mechanism (which can be thought of as a
special kind of inference) to support it. The class-
subclass relation, however, is only one of many
possible important relations. Others include part-
whole (both physical and conceptual), proximity,
connectivity, etc. The object paradigm must be
extended to include a general notion of relation;
relations themselves should be represented as having
attributes and as participating in relations (i.e.,
relations among relatioms). Although supportive
inference mechanisms (analogous to inheritance) may be
defined for some of these types of relations (e.g.,
transitive closure for connectivity), the supporting
mechanisms for a particular relation should be
customizable by the simulation designer.

Most modeling efforts involve building a "model of
interest” that is embedded in a surrounding "world
model”. The model of interest is the focus of concern
for the modeler. The world model is the simulated
environment of the model of interest: its presence is
largely a distraction, but it must be modeled
appropriately to provide the correct environment for
the model of interest. A common example is the need to
model physical phenomena (such as motion, signal
propagation, etc.) to provide an environment for the
objects of concern (e.g., airplanes or radio
transmitters). To produce lucid simulations in such
cases requires separating the world model from the
model of interest within the simulation so that the
details of the world model do not obscure the model of
interest. Current simulation environments provide
little or no support for such separation. Furthermore,
implementing the world model often requires introducing
“"artifactual" objects (such as propagation channels)
whose existence does not correspond to any real objecdt
of interest (Klahr 1985) and whose interactions clutter
the simulation with artifactual messages. New
techniques for encapsulating such objects and behaviors
are a necessity for building lucid simulations.

At a more fundamental level, a strict object-
oriented paradigm may be inappropriate for modeling
certain aspects of the real world. In particular,
representing physical and temporal phenomena (such as

166

motion), and autonomous phenomena in general (those
phenomena which change independently over time), does
not fit the object/message framework very well. Since
these phenomena form the core of the world models of a
huge class of models of interest, it is vital to pursue
alternative representations for them. The use of
declarative analytic forms (i.e., mathematical
relationships and constraints) must be explored as a
way of removing this artifactual burden from the object
paradigm.

An additional source of artifacts is the
maintenance of the simulation environment itself. One
such artifact involves the "automatic unplanning" of
planned events which become invalidated by subsequent
events. For example, an object's plan should be
automatically negated if that object is destroyed. The
integration of a graphic interface with a simulation
also tends to introduce artifacts. Objects and
behaviors that have nothing to do with the actual model
may be needed to handle problems such as when to update
the display, how to do so with minimal overhead and
visual disruption, how to insure consistency of the
simulation state at the moment of display (e.g.,
avoiding "ghost" images of objects in imvalid states),
and how to synchronize user input (for example,
interrupting the simulation to query some object) with
the state of the simulator (which may have changed the
state since the last graphic update). Solutions to

such problems often require such artifacts as

synchronization messages, objects and attributes that
represent the graphic state itself, and behaviors for
objects to display themselves or to update their
images. Whereas the object-oriented approach may make
a graphic interface relatively easy to implement (Klahr
1985, Stefik86), it seems to do so at the cost of
introducing artifacts which plague the designer and
implementor, if not the user. Artifacts like these
deserve special treatment via tailored mechanisms in
the simulation environment.

3.4 Comprehensibility

Much of the advantage of the object-oriented
paradigm over other approaches derives from its having
improved the comprehensibility of simulations, both for
the designer/implementor and for the ultimate user.
This in turn is a direct result of what is by now a
well-accepted tenet of good software engineering: the
encapsulation of data and behavior. While this is
decidedly worthwhile, it does. not by itself eliminate
artifacts from simulations (as discussed above), nor
does it address a number of broader issues of
comprehensibility by users.

The user of a modern simulation typically
interacts with the system through a graphics interface.
Although some of these interfaces are quite impressive,
many of them allow minimal interaction. It is still
difficult to provide a simulation builder with the
tools to create highly interactive graphics interfaces
without considerable effort. Along with "intelligent
exploration"”, as described above, a simulation must
provide "intelligent explanation" of its behavior and
its results. The user should be able to query the
states of visible objects, obtain graphical
representations of relations among objects and use the
display to explain the behavior of the simulation
wherever appropriate. A graphics interface of this
kind straddles the two capabilities we have called
intelligent explanation and exploration: two-way
graphic interaction is assumed in both cases (for
example, there should be no sharp demarcation between
querying an object's state and changing it).
Intelligent explanation should take advantage of the




Object-Oriented Simulation

representational and inferential power of the simulator
to attempt to display meaningful results to the user by
means of all available graphic techniques, including
animation, color, visual abstraction, etc.

In many cases a user may want to see different
aspects or levels of a simulation at different times or
for different purposes. The control of aggregation and
abstraction discussed above provides one degree of
freedom in this direction, but by no means the only
one. It is often important for the user to be able to
specify the desired scope, level or (generally) "view"
of the simulation to be displayed, in terms of the
structure of the underlying model. This might be done
by dynamically creating an object hierarchy at the
user's request to represent the desired view. Such a
facility would allow showing different "cuts” of a
simulation while it was running.

One final area of need along this axis is that of
sensitivity analysis. Understanding how a model
depends on variations in its parameters may provide
vital insight. Unfortunately, in all but the simplest
cases, sensitivity analysis has traditionally been
prohibitively expensive, even in analytic simulations
where closed-form solutions for partial derivatives are
available; in discrete-state simulations where closed-
form solutions are rarely available, the situation is
usually considered a lost cause. Although reasonable
techniques have been developed for displaying the
results of sensitivity analysis (Clemons 1985), much
remains to be done to make it computationally feasible.
Nevertheless, without sensitivity analysis it is often
nearly impossible to understand which relationships are
meaningful in a complicated model. In Section 4.4, we
will describe some techniques we are exploring to
simplify the computations.

3.5 Model-Building Issues

The above discussion has touched on a number of
issues related to the implementation of simulations
(such as representational techniques for eliminating
artifacts). However, there are additional problems
facing model builders, ranging from software
engineering to conceptual issues.

The desire to build ever larger and more realistic
models of complex environments inevitably raises
questions of scalability. Though the object-oriented
approach itself can be found in languages like Ada (for
which scalability was a major design goal), object-
oriented simulation environments have tended to be
implemented in LISP, and therefore suffer from LISP's
well-known scaling and integration problems. The most
obvious dimension of scalability involves efficiency
and execution speed, which become problematic when
scaling from dozens of objects to thousands. The
solution to this may lie in parallel computing, though
this involves problems of partitioning an object-
oriented solution into subsets that can be effectively
distributed among processors (Jefferson 1982).

A further subtle problem of scaling involves
issues of "scope" in the design of an object-oriented
simulation. Although objects are theoretically
intended to encapsulate data and operations, most
current environments make object names, message forms,
and even attribute names globally available, thereby
undermining one of the main advantages of object-
orientation. In order to create complex simulations
.involving more complex object class hierarchies and
interactions (not just larger numbers of instances of a
small set of object classes), it is imperative to
reduce this global name space: software engineering

467

principles decree that the proliferation of globals is
inimical to reliability. Some form of scoping of name
spaces must be developed to permit such scaling.
Ironically, the object paradigm itself seems to provide
a natural comstruct for such scoping, i.e., the object.
An object S might define a scope for its subordinate
objects by prohibiting them from naming any other
objects except each other (and 8), and by allowing them
to access as globals only the attributes of S. The use
of objects to represent scope in this way should be
explored as a possible solution to the problem of
globals in object-oriented simulations.

As simulations become more complex and attempt to
represent additional kinds of knowledge, they will
inevitably encounter many of the same problems found in
expert systems, having to do with maintaining a
consistent knowledge base. Some of these problems can
be solved by the use of declarative constraints to
enforce invariants on the knowledge base. Expert
systems research has developed techniques for "truth
maintenance" (Quinlin 1982, Shafer 1985), and "logical
support” (Garvey 1981) for assertions in a knowledge
base, which should also be applicable to simulations.
For example, this approach may offer a solution to the .
problem of "automatic unplanning” mentioned above: a
plan that was unsupported by the current state would be
automatically removed by a kind of "logical garbage
collection”. 1In addition, it has been noted (Davis
1982) that there tend to be many uncertainties about
the assumptions in a model: some of the attributes,
behaviors, interactions, and relationships in a
simulation are more reliable than others. Ideally, the
certainty and logical support of these aspects of the
simulation itself should be handled by the same
mechanisms that maintain the simulation knowledge base.

Finally, there is the dream of being able to build
new models on top of old ones: using existing models,
or pieces of models, as modules out of which to
construct new ones. This is particularly applicable to
those aspects of a model that constitute its "world
model”, as defined above. Any model that is embedded
in a model of the physical world should ideally be able
to build on top of existing models of the physical
world, since these presumably share many of the same
features. This assertion is somewhat glib, since
different models may require modeling very different
aspects or levels of detail of the physical world.
However, if such world models can be built to allow
variable levels of aggregation and abstraction (as
discussed above), it should be possible to share them
across a fairly wide range of applications. Of course,
sharing ultimately requires a common language for
knowledge representation and simulation behavior, which
is not on the horizon. Nevertheless, it should be
possible to represent significant portions of models
(object descriptions, attributes, relations, etc.) in
database form, suitable for use by any simulation
environment capable of accessing the database. This
capability, in conjunction with the principles stated
above, should permit the construction of powerful,
flexible models that are modular and lucid enough to be
reusable. This would be a significant step forward
both because it would reduce the effort of building
realistic models and because it would lead to long-
lived standard models of widespread interest (e.g.,
physical models), whose longevity would allow them to
evolve, thereby enhancing their sophistication,
reliability and completeness.



J. Rothenberg

4. KNOWLEDGE-BASED SIMULATION AT RAND

The Knowledge-based Simulation project at Rand
combines simulation and reasoning in an attempt to
solve some of the deficiencies discussed above. It
combines object-oriented simulation with expert systems
techniques, emphasizing hybrid representation,
simulation at multiple levels of abstraction, and
graphic explanation and exploration. This section
provides a brief summary of our current work. Much of
the philosophy and strategy of our approach is
contained in the foregoing discussion; the following
comments serve mainly to identify which problems we are
currently addressing.

4.1 Project Background

The seminal work of Newell, Shaw and Simon at Rand
in the 1950s dominated much of Al's early research and
defined many of its continuing focal points. In the
last decade Rand research on expert systems has
produced the RITA and ROSIE languages, as well as
several expert system applications. Simulation
research at Rand produced the SIMSCRIPT language as
well as theoretical and experimental research in game
theory, monte carlo simulation, and military wargaming.

More recently our simulation research has
synthesized ideas and techniques from artificial
intelligence, expert system technology, graphics, and
distributed computing. Key results include the object-
oriented simulation language ROSS that makes
simulations easier to build and maintain, the Time Warp
technique that reduces the execution time of object-
oriented Simulations by using a network of processors,
and a number of simulations in ROSS (Klahr 1982, Klahr
1984, Klahr 1985).

4.2 Extended Modeling Paradigm (Hybrid Simulation)

We are currently augmenting the ROSS language in
several ways. Objects will retain most of their
current characteristics, including multiple hierarchies
for the inheritance of attributes and behaviors. In
previous ROSS simulations, generic ("class") objects do
not themselves respond to messages; all messages are
received and responded to by instance objects. We are
experimenting with allowing simulations to vary their
levels of abstraction and aggregation by associating
behaviors and attributes with generic objects. These
generic objects simulate the behavior of their
instances and maintain attributes representing
aggregations of the attributes of their instances.

We are exploring alternative rule paradigms to
represent objects' behaviors, intentions and reasoning
processes as well as the behavior of the simulation
itself (e.g., selecting appropriate levels of
abstraction and aggregation based on the user's stated
needs). Our goal is to satisfy the dual criteria of
making simulation code easier to understand and
amenable to automatic inferencing.

In integrating these ideas, we are using rules and
constraints to separate those aspects of a simulation
that are really descriptions of the simulated world
from the objects of interest in that world. Similarly,
we are experimenting with declarative forms and "demand-
driven" computation to separate out such aspects of a
simulation as automatic unplanning, control of
inferencing, control of level of aggregation, and
"artifacts" of graphic presentation and interaction,
thereby unburdening the model of interest.

468

4.3 Intelligent Explanation

Explanation requires that a simulation keep track
of what it has done and be able to analyze its own
execution history and behavior specifications,
presenting this analysis to the user in understandable
form. The system must maintain an execution history of
events that have occurred, rules that have been
invoked, messages that have been sent, prior values of
attributes and states of databases, magnitudes of
changes, etc. We are experimenting with various
representations of simulation history for producing
"execution trace" style explanation.

The primary task of explanation is to convince the
user that a model is behaving reasonably, and to show
how it arrived at a particular result. The user must

.be able to stop the simulation interactively and

indicate (either graphically or by means of a query)
the result that is to be explained. The user must also
be able to back up to a previous point in the
simulation, since a key result may not be recognized
until after its occurrence.

We are developing a graphics facility for
performing such interactions, emphasizing the ability
to animate selected portions of a simulation. We plan
to give control to the system (via rules) and/or the
user (via direct interaction) over the level of graphic
abstraction presented, so as to minimize visual clutter
and display aggregated results.

4.4 Intelligent Exploration

Exploration allows a user to selectively modify a
simulation, pursue excursioms, focus attention on
selected aspects of the model, perform sensitivity
analysis or ask how particular results might be
achieved.

The graphic interaction described above allows the
user to select objects graphically and edit their
attributes or behaviors explicitly. This provides a
natural way to specify a scenario and set up initial
conditions for a simulation run. We are also
experimenting with graphical input for specifying
procedural information, for example allowing the user
to draw a route for a moving object on the screen. The
system must capture (and generalize) the relevant
information, representing it as a new behavior for the
object. This "graphic behavior modification™ should
allow non-programmers to specify simulation scenarios
more easily.

Similar techniques will allow the user to
interrupt a simulation and try alternative excursions,
selectively modifying attributes and behaviors. We are
experimenting with alternative approaches to relaxing
constraints during such explorations, under user
control.

Another major concern is to allow analysts to
perform sensitivity analysis on a model, to identify
important factors. We are examining both static and
dynamic approaches to this problem. Static approaches
include applying inferencing to rules and logical
constraint declarations, or applying analytic methods
to closed-form mathematical constraints. Dynamic
approaches include automatically generating and running
excursions to perturb selected variables. In both
static and dynamic cases we are experimenting with a
hierarchical representation of sensitivity, as a way of
improving the computational feasibility of complicated
analyses.




Object-Oriented Simulation

Finally, we are examining the utility of goal-
driven simulation, where the user specifies a
hypothetical result and the system tries to find a way
to achieve it by a combination of static analysis of
constraints (to eliminate certain results as
impossible), forward chaining from a given set of
conditions, and backward chaining from desired goals or
hypotheses.

5. CONCLUSION

Modeling is by far the most powerful technique for
understanding and predicting the behavior of the real
world. Discrete-state simulation is an important form
of modeling that allows representation of systems whose
behavior is not well understood analytically. The
object-oriented paradigm represents the current state-
of-the-art in discrete-state simulation; it has greatly
enhanced the lucidity and cogency of this form of
modeling. Nevertheless, many severe limitations must
still be overcome, ranging from fundamental issues of
modeling power and representation to pragmatic issues
of comprehensibility, scalability and reusability. The
above discussion has identified some of the most
important limitations in each of these categories, and
has suggested solutions in terms of extensions to the
paradigm. A number of these extensions are currently
being explored by the Knowledge-Based Simulation

project at Rand.

REFERENCES

Clemons, E. and Greenfield, A. J. (1985). The SAGE
System Architecture: A System for the Rapid
Development of Graphics Interfaces for Decision
Support. IEEE C6&4, 5(11), 38-50.

Simula--An
Communications ACH,

Dahl, 0-J. and Nygaard, K. (1966).
Algol-Based Simulation Language.
9, 671-678.

Davis, M., Rosenschein, S. and Shapiro, N. (1982).
Prospects and Problems for A General Modeling
Methodology. N-1801-RC, The Rand Corporation, Santa
Monica, California.

Erickson, S. A. (1985). TFusing AI and Simulation in
Military Modeling. A7 Applied to Simulation,
Proceedings of the European Conference at the
University of Ghent, 140-150.

Garvey, T., Lowrance, J. and Fischler, M. (1981). An
Inference Technique for Integrating Knowledge from
Disparate Sources. Proceedings of IJCAI '81, 1.

Goldberg, A. and Kay, A. (1976). Smalltalk~72
Instruction Manual. Report SSL 76-6, Xerox PARC,
Palo Alto, California.

Jefferson, D. and Sowizral, H. (1982). TFast Concurrent
Simulation Using the Time Warp Mechanism, Part I:
Local Control. N-1906-AF, The Rand Corporation,
Santa Monica, California.

Kiviat, P., Vilanueva, R. and Markowitz, H. (1968).
The Simscript II Programming Language.
Prentice~Hall, Englewood Cliffs, New Jersey.

Klahr, P. (1985). Expressibility in ROSS: An
Object-Oriented Simulation System. Al Applied to
Simulation, Proceedings of the European Conference at
the University of Ghent, 136-139.

Klahr, P., Ellis, J., Giarla, W., Narain, S., Cesar, E.
and Turner, S. (1984). TWIRL: Tactical Warfare in
the ROSS Language. R-3158-AF, The Rand Corporation,
Santa Monica, California.

Klahr, P., McArthur, D., Narain, S.
(1982). Swirl: Simulating Warfare in the ROSS
Language. N-1885-AF, The Rand Corporation, Santa
Monica, California.

and Best, E.

McArthur, D. and Klahr, P. (1985). The ROSS Language
Manual. N-1854-1-AF, The Rand Corporation, Santa
Monica, California.

Quinlin, R. (1982). Inferno: A Cautious Approach to
Uncertain Inference. N-1898-~C, The Rand Corporation,
Santa Monica, California.

Shafer, G. and Tversky, A. (1985).
Designs for Probability Judgement.
Science, 9, 309-339.

Languages and
Cognitive

Steeb, R., Cammarata, S., Narain, S. and Giarla, W.

469

(1984). Distributed Problem Solving for Air Fleet
Control: Framework and Implementations. N-2139-ARPA,
The Rand Corporation, Santa Monica, California.

Stefik, M., Bobrow, D. and Kahn, K. (1986).
Integrating Access-Oriented Programming into a
Multi-Paradigm Environment. ZEEE Software, 10-18.

Stefik, M., Bobrow, D. G. end Mittal, S. (1983).
Knowledge Programming in LOOPS: Report on an
Experimental Course. The AI Magazine, 3-13.

AUTHOR'S BIOGRAPHY

Jeff Rothenberg is a Computer Scientist and
Project Leader at the Rand Corporation, in charge of
the Knowledge-Based Simulation Project. He received a
B.A. in mathematics from Williams College in 1968. At
the University of Wisconsin, Madison, he received an
M.S. in Computer Science in 1969, and then pursued
additional graduate work in AI and robotics. He has
been involved in various simulation, graphics, and
intelligent tutoring applications at USC Information
Sciences Institute (1973-79), Clear Systems (1979-83),
TRW (1980-81), and Uniform Software (1983-84), His
current research interests include graphic user
interfaces for expert systems and simulation,
concurrent processing, and new techniques for knowledge
representation.

Jeff Rothenberg

Information Sciences Department
The Rand Corporation

1700 Main Street

Santa Monica, CA 90406 , U.S.A.
(213) 393-0411



