Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

DISCRETE VISUAL SIMULATION WITH
Pascal_ SIM

Robert M. O’Keefe
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, U.S.A.

ABSTRACT

Pascal_SIM is a collection of Pascal constants, types, vari-
ables, functions and procedures for developing event, activ-
ity, three-phase or process orientated discrete-event simula-
tion models. Facilities are provided for queue processing, time
advance and event list maintainence, control of entities and
resources, random number generation and streams, sampling
from parametric and empirical distributions, statistics collec-
tion, and visual displays. Pascal SIM has been designed as
a minimal simulation tool. If includes less than 50 functions
and procedures, and totals less than 800 lines of code. It is a
basis for programming simulations in Pascal, where users can
alter or extend the facilities provided, rather than a simulation
programming language. The majority of Pascal SIM conforms
to the ISO Pascal standard, enabling high portability to be
achieved. It can be used immediately with any Pascal that uses
the string type descended from UCSD Pascal, for instance Pro
Pascal, Turbo Pascal or Sheffield PRIME Pascal. Alteration
of a few lines allows for use with any Pascal that provides a
different string type, for instance VAX/VMS Pascal. This pa-
per gives a tutorial presentation of Pascal SIM, with emphasis
on the facilities for visual displays.

1. INTRODUCTION

Recent years have seen some resurgence in interest in the
use of general purpose programming languages as vehicles for
simulation programs. In part this has been due to the increas-
ing availability of good implementations for strongly-typed block
structured languages such as Pascal, Ada, and Modula-2. Fur-

ther, the use of microcomputers has accelerated such interest,
since many Simulation Programming Languages and packages
are too large for use on microcomputers, or when available on
microcomputers, are highly ineffiecient.

To facilitate simulation on micrcomputers, in 1982 the au-
thors produced a system for programming discrete simulations
in Pascal on the Apple II. Called AIMS (O’Keefe, 1983; O’Keefe
and Davies, 1986a), it was composed of seven UCSD Pascal
library units and a number of associated utilities which the
model developer used to construct a simulation as a UCSD
Pascal program. At about this time, other Pascal based sys-
tems were in development, including PASSIM (Uyenso and
Vaessen, 1980), based on GPSS, and SIMPAS (Bryant, 1980}, a
SIMSCRIPT-like language which is pre- processed into Pascal.

517

Ruth M. Davies
Department of Mathematical Sciences and Computing
South Bank Polytechnic
London, SE1.OAA, England.

AIMS had a number of useful and sophisticated features, in
addition to the more basic ones such as queue processing and
sampling from parametric distributions. One of the units pro-
vided facilities for iconic visual displays (this was programmed
in assembler, and made direct use of the Apple I’s graphic
functions in ROM), and another provided for continuous dis-
play of time series. Associated utilities included an editor for
distribution data, which allowed for the formation of empiri-
cal distributions, and a shape editor, where an icon could be
defined for future use in visual displays.

AIMS died with the relative demise of the Apple I and the
shift to MS-DOS. However, much of it was reprogrammed en-
tirely in Pascal to provide a highly portable discrete simulation
system, and was rechristened Pascal SIM. Various versions of

Pascal SIM have been in use in both education and industry
for over 3 years.

2. THE DESIGN OF Pascal SIM

The philosophy of Pascal SIM is to provide the basics of
a Simulation Programming Language, and little more. Those
using Pascal SIM can then add the facilities they need and
change the underlying structure if they wish. A further aim
is to provide a means whereby students could learn to write
simulations in a familiar language using facilities that are well
documented and easy to understand. Visual Interactive Sim-
ulation and animation has been very successful (Bell, 1985);
therefore some facilities for iconic visual displays have been
included.

AIMS enforced the three-phase world view, as first pro-
posed by Tocher, where a simulation is perceived as a number
of bound or scheduled events, plus a number of conditional
events which are scanned. Pascal.SIM can be used to pro-
gram a three-phase or a two-phase simulation (ie. pure event
scheduling or activity scanning), or using an additional version
of the executive, a simple process description simulation.

3. THE STRUCTURE OF A Pascal SIM PROGRAM
3.1. The Three-Phase Method

The recommended structure of a three-phase orientated
Pascal SIM program is shown in Figure 1. At the heart of
the simulation is the executive, the procedure run, which con-
tains the time flow mechanism. Although the structure of this
is provided, the user must enter the names of all events into a

R. M. O’Keefe and R. M. Davies

case statement in this procedure. The number of conditional
events max_C and the time duration (duration) are both ar-
guments. The user must code the events and the procedures
initialize and report; for a visual display display and picture
must also be coded. initialige and picture are called once be-
fore run; they initialize the simulation and the static picture
respectively. Report should be called after run, and should
contain any end of run reporting, for example, final statistics
prints. Display is called after every advance of the clock; it
should be used to update the visual display as necessary.

3.2. The Two Phase Methods

The three-phase executive can be used for the {wo-phase
event scheduling approach, by setting max.C to zero and in-
corporating all the conditional event logic into the scheduled
events. Similarly, a two- phase activity scanning approach can
be used by incorporating all scheduled events into the model
as conditional events.

3.3. The Process View

A separate executive has been written for this approach.
Whilst not process interaction, in that processes can not signal
each other, descriptions of independant processes are possible.
This is sometimes referred to as process description. Further,
both servers and transactions can have process descriptions -
thus the approach is conceptually closer to process interaction
than GPSS. Each process is written as a separate procedure;
the user must enter the names of all processes into the executive
run.

3.4. The Entity

The basis of Pascal SIM is an entity type, which is a Pascal
record thus :-

entity="an_entity;
an_entity=packed record
avail:boolean;
class:class_num;
col:colour;
attr,next B:cardinal;
time:real;
end;

where the fields of the record represent :-

avail: The availability of the entity
class: The number of the_ entities class
col: The colour of the entity

attr: The entities attribute number

next.B: The next bound event or block that the entity will
enter

time: The time that which this will occur

An enlity is always either available, entered in the calendar
of future events, or is being used by another entity. If entered
in the calendar, availis false, and next_B and time will be set to
appropriate values. Thus there are no explicit event notices in
Pascal SIM because an entity contains all relevant event infor-

518

{ Bound events }

procedure B1;
procedure B2;

{ Conditional events }

procedure C1;
procedure C2;

procedure display;

procedure run(duration:realymax_C:cardinal);
procedure initialize;

procedure picture;

procedure report;

begin

initialize;
picture;

run(.., ..);
report;
end.

Figure 1: The structure of a three-phase Pascal SIM program

mation. Entities are generated with the function new_entity,
and can be disposed of with the procedure dis_entity.

Access to entities is acheived through the global variable
current, which always points to the entity that has caused the
present event, or else by searching queues of entities.

The attribute number attr uniquely indentifies each entity.
If further attributes are required they can either be added to
entities by using the attribute number to access another data
structure, or else by adding in new fields to the entity record
and recompiling Pascal SIM. In complex models, the developer
would establish classes, where a class is a list of entities, and
both the class and each entity may have attributes. For visual
displays, the developer must enter classes into a class table,
which holds information on the letter and colour used to rep-
resent an entity in the display.

3.5. Resources

A resource type, with associated routines, is provided to
model passive entities which only serve. resoruces are collected
into a bin - in effect a bir is identical to the STORAGE of
GPSS; a bin with only one resource is identical to a FACILITY.
Resources are said to be acquired and released by entities.

3.6. Functions and Procedures

The provided functions and procedures of Pascal SIM are
grouped into 11 groups, respectively :-

Discrete Visual Simulation with Pascal _SIM

queue processing

entities and classes

timing and the executive
facilities for process description
resources

eITor messages

random number generation and streams
sampling distributions
histograms

screen conrol

visual displays

The interface of Pascal_SIM, ie. all constants, types, global
variables and function and procedure heads, is shown in the
appendix A. A certain excess redundancy is present in the four
routines (give_top, give_tail, take_top, take_tail) which allow for
giving and removing entities to the top and tail of a queue. Use
of these allow students to develop First In First Out queueing
models without having to explicitly dereference pointers.

4. AN EXAMPLE - ADMISSION TO HOSPITAL

The example to demonstrate how to program using Pas-
cal .SIM is a hospital simulation, shown as an activity diagram
in Figure 2. Two types of patient are admitted to hospital.
Those not admitted for an operation undergo a short stay, and
then return home. Patients admitted for operation undergo a
pre-operative stay, an operation (which requires an open and
available operating theatre), followed by a post-operative stay
and discharge. Such a simulation is somewhat simplistic, but

might be used to investigate various policies regarding bed and
operating theatre provision.

Appendix B shows a Pascal SIM three-phase orientated
program for a visual simulation. An example visual display is
shown in Figure 3. In the initialize procedure, the simulation
and random number streams are initalized (via make_sim and
make_streams), a bin called bed with 4 resources is created
using make_bin, and the queues q1,92,q3 and q4 are initial-
ized using make_queue. The operating theatre is created, and
scheduled to close in 8 hours. Note that cause is the schedul-
ing procedure; the first parameter indicates the bound event
that will be entered. This has to be specified as an integer,

- since Pascal does not allow procedure names to be passed as
parameters and stored for future calling. Case statements in
the executive relate these numbers to procedures calls.

4.1. Programming the Visual Display using the Three-
Phase Approach

The visual display is composed of two parts - a static back-
ground picture which is written to the console once prior to
the simulation run, and a dynamic display which moves over
the static picture. The dynamic display can be updated ei-
ther within an event, bound or conditional, or following a time
beat (where one or more events will have been executed) in the
procedure display.

Even with using text to program simple iconic visual dis-
plays, a minimum amount of screen control is essential. Cursor
addressing must be possible; for colour displays the ability to

519

Patient

Operating

==~ Theatre

Figure 2: An activity diagram for the hospital simulation.

set both foreground and background colour is necessary. Many
terminals provide both of these, and thus the visual display
routines are highly portable.

A static picture is created in the procedure picture. Entity
classes 1 and 2 (respectively hospital stay only and operation
patients) are entered in the class.table with letters s’ and ’o’.
Both will appear blue, unless the field col in the entity record
has been set to a colour - this overrides the class_table entry.
To provide a background, blocks coloured magenta are entered
in the display, and some simple annotation is provided using
the gotoxy procedure in Pascal SIM and the standard Pascal
procedure write,

The procedure display provides for updating of the dy-
namic display after a time beat. The number of beds in use
(bed.number-bed.num_avail) is written. At this point, the dis-
play is completely up to date. The simulation is then delayed
relative to the time before the new time beat (tim-old.tim). If
this is not done, the display advances too quickly for comfort-
able viewing. The new clock time tim is then written to the
display, and the simulation (and thus the part of the picture
generated within events) can continue.

Most of the visual display statements are embedded in the
events. For instance, when a hospital stay only patient arrives,
the following occurs (see procedure patientl.arrives) :-

put patient on a queue for a bed

show the arrival of the patient by horizontal movement
display the hospital stay only queue for beds

cause the arrival of a new hospital stay only patient

R. M. O’Keefe and R. M. Davies

783.06

BED iN USE

HOSPITAL

STAY ONLY
L
I
OPERATION

OPERATING
THEATRE

Figure 3: An example visual display. The display shows a
patient, represented by the letter o, queuneing for the operating
theatre to open. Three beds are in use; the present clock time
is 783.06 time units.

The procedures move_h {move horizontal) and move.v (move
vertical) are the main methods for moving entities across the
display. The letter representing the entity is moved on the spec-
ified background colour either horizontally or vertically. Note
that when ready for an operation, in procedure end_pre.opera-
tive_stay, operation patients have their colour set to yellow,
and will thus appear yellow on the screen from that point on.

5. A PROCESS DESCRIPTION VERSION

Process orientated simulations in Pascal SIM are written
by splitting a procedure into a number of different blocks us-
ing a case statement. Entities advance from block to block;
a procedure can be ’reactivated’ by being called and a block
(ie. 2 branch of the case statement) being attempted. A pro-
cedure called branch is used to immediately cause an entity
to attempt a new block. The first parameter of a cause state-
ment now specifies a block number rather than an event, and
an entities class number identifies its process. The need for the
programmer to split a procedure up with a case statement, to
explicitly specify when a process must be suspended (this is
done here using a repeat until loop with a flag called finished),
-and to explicitly test if entry to a block is possible, makes
the programming fairly ungainly and error prone compared to
true process interaction languages. It does, however, allow for
process description modelling in Pascal.

In the process description executive, which is modelled on
the GPSS executive, an entity is either entered in the calendar
or on a chain of suspended entities. Queue priority is implicit,
dependent upon an entity’s position in the suspended chain.

This means that the developer of a visual simulation must in-
troduce dummy queues at various points in a process so that
the queues can be written to the picture. (This is analogous
to having to use dummy queues to collect statistics in GPSS.)
Those interested in process description models in Pascal SIM
should refer to O’Keefe and Davies (1986b), which includes a
process version of the hospital example.

6. PORTABILITY AND IMPLEMENTATION

Considerable portability is achieved by close adherence to
the ISO Pascal standard. Only two non-standard Pascal facil-
ities are used - the use of an underscore in names (which can
casily be edited out), and the use of a string type. However,
most Pascal implementations provide a string type, and Pas-
cal_SIM can be implemented without change under any Pascal
that uses the string type and associated functions descended
from UCSD Pascal. Examples include Turbo Pascal, Pro Pas-
cal, and the Pascal compiler for PRIME systems produced at
the University of Sheffield in England. If a string type is defined
differently, or different functions are provided, a few alterations
are necessary. For instance, in VAX/VMS Pascal, the string
type is varying array of char rather than siring, and strings
are concatenated directly using the addition operator rather
than a concat function. If strict ISO Pascal is followed, and a
packed array of char has to be used, then only one procedure
is unuseable. This is print_histogram, which prints histograms
to a text file.

Pascal .SIM is normally implemented by some method of
prior compilation. Methods include adding the functions and

procedures to a library and the variables to a common area
(this is the method of implementation in Pro Pascal), produc-
tion of a unit or module, containing all of Pascal SIM, that
is then put in a library (for imstance, UCSD Pascal), or by
a similar method (for instance, implementation in VAX/VMS
Pascal is acheived by production of an environment file for the
constants, types and variables, and an associated module for
the functions and procedures). Thus the facilities are avail-
able to any Pascal program by simple reference to the library,
unit or whatever. Pascal SIM has been used extensively with
Turbo Pascal, which provides no facilities for separate compi-
lation. Here the programmer must recompile Pascal SIM with
the simulation.

To implement Pascal SIM, it is necessary to set up the
screen control codes within a number of procedures. Many
terminals can be made to accept ANSI screen control codes
{for instance, IBM-PC monitors} or use an extension of ANSI
(for instance, DEC VT100 and VT240). Thus ANSI screen
control (and the extended ANSI descended from Textronix for
colour text) is frequently sufficient. Additional copies of some
screen control and visual display routines are provided for use
with Turbo Pascal, which call the screen control routines built
into Turbo Pascal.

Two random number generators are provided - one for 32-
bit integer machines, one for 16-bit integer machines. These
are respectively the linear congruence generators

Zip1 := (Z; % 1680T)mod2147483647

Discrete Visual Simulation with Pascal.SIM

and
Ziyy = (Z; % 3993 + 1)mod32767.

The 16-bit version is an implementation of a generator sug-
gested and tested by Thesen, Sun and Wang (1984), which
assumes that detection of integer overflow has been disabled.
(Incidently, the authors have found the built in mathemati-
cal functions of Turbo Pascal, for instance, exp and sin, to be
poor. Hence distribution sampling methods that employ these,
for instance the Box- Muller method for Normal variates, pro-
vide relatively poor sets of samples, with too few samples from
the tail of the distribution.)

7. CONCLUSIONS

The authors have mainly used Pascal SIM with Turbo Pas-
cal and VAX/VMS Pascal. Pascal SIM, Turbo Pascal, a colour
monitor, and an IBM- PC/XT or AT allow visual simulations
of resonable display quality to be developed and run. For sta-
tistical experimentation, the model can then be ported to a
VAX, and the Pascal SIM statements relating to the visual
display replaced by statements for statistics collection using
histograms (an area of Pascal SIM that has not been covered
in this paper).

Programming visual simulations can be time consuming,
and typically in the hospital example there are more programmed
statements relating to the display than to the logic of the simu-
lation. This is true for other programming language orientated
visual simulation systems, for example SEE-WHY (Fiddy, Bright
and Hurrion, 1981).

The authors have found the thiree-phase world view the
best for visual simulation. The three-phase method allows the
picture to be updated after time dependent changes (bound
events), state changes (conditional events), or time beats as
appropriate. However, having the range of world views in one
‘package, including two-phase, three-phase and process descrip-
tion views, is very useful for teaching. Students can program
models using a number of views, and thus obtain a better un-
derstanding of frameworks for simulation model building than
when using one approach.

The value of producing a Pascal based simulation tool may
be considered questionable, given the recent emphasis on the
entire process of model development (Nance, 1984), and the
promise of Artificial Intelligence (O’Keefe, 1986). Many simu-
lations are, however, still programmed in FORTRAN {Christy
and Watson, 1983). Increasingly students of science and engi-
neering subjects are learning Pascal as their main programming
language. They will undoubtedly want to write simulations in
Pascal. Pascal SIM provides a structure and the facilities to
do this.

Acknowledgements

Many of the ideas in Pascal SIM can be traced back to a Pascal based
system produced by John Crookes at the University of Lancaster,
England.

This paper was completed whilst the first author was on leave from
the Board of Studies in Management Science, University of Kent at
Canterbury, England.

Pascal .SIM is available on an IBM-PC disc for a nominal fee. It

521

can be obtained from either of the authors or Decision Computing,
1 Worthgate Place, Canterbury, England. However, swift response
to any request for Pascal SIM is not guarenteed ! Please write - do
not phone.

The following are trademarks :

Pro Pascal: Prospero Software Limited

Turbo Pascal: Borland International

VAX/VMS: DEC

IBM-PC: IBM

UCSD Pascal: Regents of the University of California
MS-DOS: Microsoft

Ada: United States Department of Defence

REFERENCES

Bell, P.C. (1985). Visual Interactive Modelling in Operational
Research: successes and opportunities. J. Opl. Res. Soc. 36,
975-982.

Bryant, R.M. (1980). SIMPAS: a simulation language based on
Pascal. In: Proceedings of the 1980 Winter Simulation Confer-
ence (Oren, Shub and Roth, eds.), The Society for Computer
Simulation,

Christy, D.P. and Watson, H.J. (1983). The application of
simulation: a survey of industry practice. Interfaces 13, 47-
52.

Fiddy, E., Bright, J.G. and Hurrion, R.D. (1981). SEE-WHY:
interactive simulation on the screen. In: Proceedings of the
Institute of Mechanical Engineers 293 /81, 167-172.

Nance, R.E. (1984). Model development revisited. In: Pro-
ceedings of the 1984 Winter Simulation Conference (Sheppard,
Pooch and Pegden, eds.), The Society for Computer Simula-
tion.

O’Keefe, R.M. (1983). A system for discrete event simulation

in UCSD Pascal. Working paper no. 93, Faculty of Mathe-
matical Studies, University of Southampton, England.

O’Keefe, R.M. (1986). Expert systems and simulation - a tax-
onomy and some examples. Simulation 46, 10-16.

O’Keefe, R.M. and Davies, R.M. (1986a). A microcomputer
system for simulation modelling. Fur. J. Op. Res. 24, 23-29.

O’Keefe, R.M. and Davies, R.M. (1986b). Discrete event sim-
ulation with Pascal. Forthcoming in Journal of Pascal, Ada
and Modula-2.

Thensen, A. Sun, Z. and Wang, T. (1984). Some effecient ran-
dom number generators for micro-computers. In: Proceedings
of the 1984 Winter Simulation Conference (Sheppard, Pooch
and Pegden, eds.), The Society for Computer Simulation.

Uyenso, D. and Vaessen, W. (1980). PASSIM: a discrete-event
simulation package for Pascal. Simulation 85, 183-190.

APPENDIX A: Pascal SIM FACILITIES

const max_cell num=16;
max.stream_num=32;
max_class_num=256;
max.sample_ num=20;

R. M. O’Keefe and R. M. Davies

max_string length==80;
delay num=2000;

type a.string=string{max string length];
cardinal=0..maxint;

colour=(nul,black,red,green,yellow,blue,magenta,cyan,white);

stream_num=1..max._stream.num;
cell num=0..max.cell num;
class_num=1..max_class_num;
sample num=1..max_sample.num;
string length=1..max string length;

entity="an_entity;
link=="alink;
alink=record
next,pre:link;
item:entity;
end;
queue=link;

an_entity=packed record
avail:boolean;
class:class_num;
col:colour;
attr,next_B:cardinal;
time:real;
end;
bin=record
number,num_avail:cardinal;
end;

histogram=record
cell:array[cell.num) of real;
count,width,base,total,s08q,min,max:real;
end;

lookup_table=array [1..max_sample num,1..2] of real;

var tim:real;

current:entity;

calendar:queue;

on_calendar:boolean;

suspended_chain:queue;

running:boolean;

original seeds,seeds:array {stream num] of cardinal;

class_table:array [class_num] of
record
let:char;col:colour;
end;

{ queue processing }

procedure make_queue(var g:queue);
procedure give(q:queue;t:link;i:entity);
function take(q:queue;t:link):entity;
procedure give_top(q:queuesizentity);
procedure give_tail(q:queue;i:entity);
function take_top(q:queue):entity;

522

function take_tail(q:queue):entity;
function empty(q:queue):boolean;

{ entities and classes }

function new_entity(c:class_num;a:cardinal):entity;
procedure dis_entity(e:entity);

procedure make_class(var c:queue;n,size:cardinal);
function count(var q:queue):cardinal;

{ timing and the executive }

procedure make_sim;

procedure cause(nb:cardinal;e:entity;t:real);
procedure calendar_top;

{ facilities for process executive }
procedure branch(next:cardinal);
procedure remove_entity;

{ resources }

procedure make.bin(var from:bin;n:cardinal);
procedure acquire(var from:bin;n:cardinal);
procedure return(var from:bin;n:cardinal);

{ error messages }
procedure sim_error(s:a_string);

{ random number generator and streams }

procedure make_streams;
procedure rnd(s:stream num):real;

{ sampling distributions }
function normal(m,sd:real;s:stream num):real;
function log normal(m,sd:real;s:stream num):real;
function poisson(m:real;s:stream num):cardinal;
function negexp(m:real;s:stream_num):real;
function uniform(l,h:real;s:stream num):real;
procedure make_sample(var sample file:text;

var tab}e:lookup.t able);
function sample(table:lookup_table;s:stream num):real;

{ histograms }
procedure reset_histogram(var h:histogram);
procedure make_histogram(var h:histogram;
cell _base,cell_.width:real);
procedure print_histogram(var pr:text;h:histogram;
state:boolean;len:cardinal);

procedure log histogram{var h:histogram;where,what:real);

{ screen control }

procedure make_screen;

procedure gotoxy(x,y:cardinal);
procedure clear_screen;

procedure set_foreground(c:colour);
procedure set_background(c:colour);
procedure reset_colours;

{ visual displays }
procedure delay;

Discrete Visual Simulation with Pascal _SIM

procedure make_class_table;
procedure enter_class(n:class_num;l:char;c:colour);
_procedure write_entity(x,y:cardinal;e:entity);
procedure write.queue(x,y:cardinal;
b:colour;q:queue;max length:cardinal);
procedure write_block(x1,y1,x2,y2:cardinal;b:colour);

move_h(20,30,50,current,white);
write queue(60,20,white,q3,30);
end;

procedure end operation; { B6 }

begin
procedure move.v(x,y1,y2:cardinal;e:entity;b:colour); thgatr e.available:=true:
procedure move . h(y,x1,x2:cardinal;e:entity;b:colour); gotoxy (;3 21) sur :l;:e ¢ : Y

procedure write.time; move.v(30,4,10,current,white);

give tail(q4,current);

{ user written routines } end:

procedure display;
procedure initialize;
procedure picture;
procedure report;

procedure end.post_operative stay; { B6 }
begin
return(bed,1);
move.h(12,40,70,current,white);
dis_entity(current);
end;

{ simulation executive }
procedure run(duration:real;max_C:cardinal);

APPENDIX B: THE HOSPITAL EXAMPLE procedure open_theatre; { B7 }
begin
theatre_open:=true;

" program example; :
gotoxy(63,20) ;write("OPEN *);

var bed:bin; cause(8,current,8) ;
ql,q92,93,q4:queue; end;
theatre:entity;
theatre open,theatre available:boolean; procedure close theatre; { BB }
{ true if theatre is open and available } begin

old _tim:real; theatre.open:=false;

procedure patienti_arrives; { stay } { Bl } gotoxy(63,20) ;write("CLOSED®);

begin cause(7,current,40);

give_tail(ql,current); end;

move_h(12,2,10,current,white);

write_queue(22,12,white,q1,20); procedure start_hospital stay; { Ci }

cause(1,new_entity(1,1) ,uniform(60,140,1)); begin

end; while (bed.num_avail>0)

and (not empty(ql)) do

procedure patient2 arrives; { operation } { B2 } begin

begin acquire(bed,1) ;

glve_tail(q2,current); cause(3,take_top(ql) ,uniform(20,40,3));

move h(14,2,10,current,white); write_queue(22,12,white,q1,20);

write.queue(22,14,white,q2,20); end;

cause(2,new_entity(2,1) ,uniform(24,48,2)); end;

end;

procedure start_pre_operative stay; { C2 }

procedure end hospital.stay; { B3 } begin

begin while (bed.num avail>0)

return(bed,1); and (not empty(q2)) do

move h(12,40,70, current,white); begin

dis_entity(current); acquire(bed,1) ;

end; cause(4,take _top(q2) ,uniform(6,16,4));

write queue(22,14,white,q2,20);

procedure end pre_operative_stay; { B4 } end;

begin end;

current”.col:=yellow;

give tail(g3,current); procedure start_operation; { C3 }

move_v(30,14,20, current,white) ; begin

while theatre open and theatre.avallable

523

R. M. O’Keefe and R. M. Davies

and (not empty(q2)) do
begin
theatre_available:=false;
cause(b,take top{(q3),1);
gotoxy(63,21) ;write("IN USE’);
write_queue(60,20,white,q3,30);
end;

end;

procedure start_post_operative stay; { C4 }
begin
while not empty(q2) do
begin
cause(6,take_top(q4) ,uniform(6,10,6));
end;
end;

procedure display;
begin
gotoxy(30,12) ;write(bed.number-bed.num avail:1);
delay;:delay;
for i:=1 to trunc((tim-old tim)/2) do delay;
old_tim:=tim;
gotoxy(1,1) ;writeln(tim:7:2);
gotoxy(1,1);
end { display }:

procedure run(duration:real;max C:cardinal);
var c:cardinal;
begin
running:=true;
repeat
if calendar=calendar”.next then running:=false
else begin
display;
tim:=calendar”.next".item".time;
if duration<tim then running:=false
else begin
while (calendar<>calendar”.next) and
(tim=calendar”.next".item".time) do
begin
calendar._top;
case current”.next B of
0:;
1:patienti_arrives;
2:patient2.arrives;
3:end hospital. stay;
4:end pre.operative_stay;
6:end _operation;
6:end post.operative_stay;
7:open_theatre;
8:close.theatre;
end;
end;
for c:=1 to maxC do
case ¢ of
1:start hospital_stay;
2:start_pre_operative_stay;

524

3:start_operation;
4:start_post_operative stay;
end;
end;
end
until not running:;
end { run }:

procedure initialize;
begin
make.sim;
make_streams;
make bin(bed,4);
make_queue (ql) ;make queue(q2) ;
make_quene (q3) ;make_queue(q4);
{ create theatre }
theatre:=new.entity(3,1);
theatre_ open:=true;
theatre available:=true;
cause(8,theatre,8);
end { initialize };

procedure picture;
var i:cardinal;
begin
enter.class(i,’s’,blue);
enter_class(2,’'o’,blue);
clear_screen;
write.block(28,10,32,14,magenta);
write_block(60,18,70,23,magenta);
set_foreground(yellow);
gotoxy(4,11) ;write('Hospital stay only’);
gotoxy(4,15) ;write('Operation’);
gotoxy(32,8) ;write(’'Beds in use’);
gotoxy(60,16) ;write(’Operating’);
gotoxy(60,16) ;write(’Theatre”);
reset._colours;
end { picture };

procedure report;
begin
end { report };

begin

initialize;

picture;
cause(1,new_entity(1,1),0);
cause(2,new.entity(2,1),0);
old_tim:=0;

run(24+30%12,4) ;

report;

reset_colours;

end.

Discrete Visual Simulation with Pascal _SIVI

AUTHOR’S BIOGRAPHIES

ROBERT M. O’KEEFE is a visiting assistant professor in
the Department of Computer Science at Virginia Tech, on leave
from the Board of Studies in Management Science at the Uni-
versity of Kent at Canterbury, England. He received a B.Sc. in
Computer Studies and Operational Research from the Univer-
sity of Lancaster in 1979, and a Ph.D. in Operational Research
from the University of Southampton in 1984. Major research
interests include Artificial Intelligence and simulation, Visual
Interactive Simulation, and the application of expert systems.
He is 2 member of SCS, TIMS, ORS, AAAJ and BCS, and a
Director of Decigion Computing Limited.

Robert M. O’Keefe

Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, U.S.A.

(703) 961-6075

Permanent address: Rutherford College
University of Kent at Canterbury
Canterbury, Kent CT2 7NX, England.

RUTH M. DAVIES has been working on the application of
statistics, Operational Research and computing to problems in
Health Care for a number of years. A continuing major research
interest is the provision of care to patients with end-stage renal

failure. She received a B.Sc. in Mathematics from the Univer-
sity of Warwick, and a Ph.D. in Operational Research from
the University of Southampton in 1984, Presently a lecturer in
Operational Research in the Department of Mathematical Sci-
ences and Computing at the South Bank Polytechnic, London,
England, she has also held research positions at the Universi-
ties of Reading and Southampton.

Ruth M. Davies

Department of Mathematical Sciences and Com-
puting

South Bank Polytechnic

Borough Road

London, SE1 OAA, England.

525

