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INTRODUCTION

Although one customarily uses the data generated in a
Monte Carlo experiment with a fixed input to estimate a
parameter of the model under study, it has long been known
that these same data can provide estimates of how this
parameter varies in response to variation in input values which
have not been used in the sample experiment. This ability to
study functional variation on a single experiment is implicit in
the description of importance sampling in Kahn (1950). The
principal contribution of the present paper is to describe the
application of this concept to the estimation of variation in
system reliability as a function of variation in component
reliabilities. The proposed method merges another importance
sampling technique, described in Fishman (1986), into the
function estimation in a way that considerably reduces the
variances of the resulting estimators.

1. CHARACTERIZATIONS OF SYSTEM RELIABILITY

Consider the network G = (7;8) with node set ¥ and
arc set & TFor convenience of exposition, assume that nodes
represent components that function perfectly and that arcs
represent components that fail randomly and independently.
To characterize G more completely, we define:

r = number of distinct types of components

q = probability that a component of type i
functions for i=1,...,r

q=(qy,--qy)

8, = set of arcs that use components of type i

r
(&n&g. =0 i#) €=U &)
% j=1 )
k; = | &| = number of components of type i
k= gkl"“’k.r)
eij = jth arcin &

X: .
1

i= 1 if arc eij functions, = 0 otherwise

X, = Eixij = number of arcs of type i
=1
that function
x= (xll""’xlkl;x21"“’x2kr;'";xrl’“"xrkr)
%= set of all arc states x
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k.—x.

P(xk,q) = L% i 1
X, ,q)—igl [q;(1—q) = ] xeZ ey

= probability mass function of states in &
#(x) =1 if the system functions,

= ( otherwise (2)
gla) = & ¢(x) P(xk,q) = probability that
XEZ
the system functions. (3)

The interpretation of the system reliability g(q) varies
with the type of system under study. For a binary—state
system with binary—state components, we consider the
F-connectedness problem. Let J denote a subset of ¥ and let

#(x) = 1if all nodes in Fare connected
when state x occurs
= { otherwise.

Then

g(q) = probability that all nodes

in Jare connected. (4)
When 9 = {s,t}C? this is called the s—t connectedness
problem. When & = 7 it is called the all~terminal
connectedness problem. These representations are useful in
studying the vulnerability of communication systems.

One can also use the network representation to study
the reliability of multi—state systems with binary-state
components. Suppose G is a directed acyclic flow network
with source node s and terminal node t and that each
components of type i has flow capacities zero with probability
1—g; and bi>0 with probability g Let

T 1 if arc eij in & has flow capacity bi>0

= 0 if arc flow capacity is zero

T' = set of all minimal s—t cutsets in G

T
A=min T % b.x..
el i=1 jegng ' Y
= maximal s—t flow in G
d(x,z) = 1if A>z

= 0 otherwise.
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Then

g(a) = I ¢(xz) Pxk,q) 20 (5)
XEZ
= probability that the maximal s~t flow
A exceeds z.

2. COMPUTATION USING THE MONTE CARLO METHOD

In its simplest form, the problem of system reliability
computation concerns the numerical evaluation of g(q) in (3).
A related problem concerns the evaluation of the reliability
function {g(q), q€4} where 2 denotes a set of component
reliabilities of interest. Unfortunately, the exact computation
of g(q), for fixed q in (3) and, more generally, the exact
computation of the reliability measures (4) and (5) all belong
to the NP-hard class of problems (Valiant 1979), implying
that no polynomial time algorithm exists at present for
effecting their exact computation. Also, it is known (Ball 1979
and Buzacott 1983) that computing g(q) at all ge.2 takes | 9]
times as long as computing g(q) at a single point.

To overcome this limitation to exact computation, one
can resort to a Monte Carlo sampling experiment wherein one
approximates g(q) by an estimate whose error of approxima-
tion decreases as the number of independent trials, on which
the estimate is based, increases. Many alternative sampling
plans exist and, in principle, one prefers a plan that exploits
prior knowledge about the system of interest to achieve an
error of specified size at less cost than alternative methods
allow.

We now describe the sampling plan described in
Fishman (1986) that applies with small modifications to the
estimation of diverse reliability measures such as (4) and (5).
Later, Section 4 extends this method to the estimation of the
function {g(q), q€.2.

3. USING PRIOR INFORMATION

Assume that sufficient prior information exists about
the system under study to enable one to identify two binary
functions {¢; (x), x€2} and {¢y(x), x€8 with the properties

¢L(X) < 4x) < ¢U(x) (6)
where ¢(x) is defined in (2). Let

gl(q) = E ¢i(x7kaq) i=L’U
XEZ

so that

&r,(9) < g(a) < gyy(a)- (M)

Now let

Py(x)—op (x
Q(xk,q) =%%%%P(x,k,q) XeF ®)

which is a probability mass function. Suppose that one can
compute g; (q) and gy(a) exactly and at reasonable cost as a
function of the size of G. Then the ordering relationships (6)
and (7) together with the probability mass function
{Q(x,k,q), x€.%} in (8) allow one to derive benefits in sampling,
as described next.

3.1 Importance Sampling
Here one concentrates sampling in the region of the
state space & = {x€.% ¢y (x)=0 and $y(x)=1} as follows:

1. Set S+0.

2. On each of K independent trials:
2a.  Sample x from {Q(x.k,q), x€.%}.
2b. Compute ¢(x).
2c.  Set S-S+ ¢(x).

3. Compute sunumary statistics

% gy(0) = g1 (0) + ey (@gy (@IS/K.
3b. V(gK(‘l))=[gU(Q)_gK(Q)] [gK((I)_gL(Q)]/ (K-1).

Here éK(q) is an unbiased estimator of g(q) with

var g (a) = [egy(0)~e(@lls(@)-g (/X (9)

and V(éK(q)) is an unbiased estimator of var éK(q).
One way to assess the benefit of this sampling plan is to

compare it with the results for a crude Monte Carlo sampling
wstimate gr(q) of g, using {P(xk,q)}. This too is unbiased
but with

var g (a) = g(a)[1-g(Q)}/K. (10)

The ratio of variances is then

R = var g (a)/var gy (q)
2 1/{gy(D)-8(0) — 2lg (Dey(a)

 [1-gg (@)][1~ggs(@N1F). ()
> 1.
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Fishman (1986) gives timing considerations, confidence
intervals that hold for finite X and an example that illustrates
the technique in practice.

4. FTUNCTION ESTIMATION

In addition to estimating the reliability g(q) at a fixed
g, the Monte Carlo method provides a way, at small marginal
cost, of estimating the reliability function {g(q), g¢ 4} where 2
is a set of component reliability vectors of interest. Here G for
a component of type i may be a function of time (i.e. qi=Fi(T)
= probability that a component of type i functions at time 7)
or it may reflect potential component reliability improvements
the effect of which on system reliability is of interest.

Suppose that one elects to perform K independent
replications with component reliability p using {Q(xk,p)}

(importance sampling). Let x(-]) denote the sample component
state vector on replication j. The estimators

£,(@ = (@ + (P87 (P)]

)P x(j),k,
P K )

K .
o 11{ 3 ¢(X(J

i1 (12)

and

ébK(q) = gU(Q) - [gU(P)"gL(P)]

K eV
szl[l $(x )]JT)—QP D ip)

are unbiased estimators of g{q) with

(13)

Kv,(q) = K var g, (q)
= {cley(p)—21,(P)llg(a*)-g1,(a®)]
— [g(d-g (e (@) (@)}
+ [gy(@)-s(9)lls(a)-g; (2] (14)
Kvb(q) =K var ébK(q)
= {clgy(p)5y ()] [g(a")—gy(a¥)]
- lgy@-sllsy(a)—e; (9]}
+ [sy(Q)-8(Q)]ls(@)-gp (0)] (15)
Keyp(@) = K covg, i (a):gyx (0

= [gy(a)-s(9)]lg(a)—5,(a)) (16)

where

349

k.
= I [/n;+(-a) (U2,

a* = (q},-q})

and

at=1/ [1+pi(1—qi)2/ (1—P1)Q?] =158

In principle, (12) and (13) enable one to estimate g(q)
for all ge2 from the single set of replications obtained by
sampling  with reliabilities p. Since

lsy7(@)-8(9)][g(a)—81,(9)] in (14) and (15) is the variance of the

component

point estimator éK(q) based on sampling with component
reliabilities ¢, the quantities in curly brackets are the
incremental changes in variances that result from sampling
with p instead of q. Of most importance, it is entirely possible
for one of these quantities to be negative, implying that an

estimate of g(q) with smaller variance than gp.(q) is possible.
To put this last observation in perspective, consider the
estimator

8k (@) = eg (@) +(1-S)gy(q) 061 (17)
which achieves minimal variance by choosing
v, (@)-c,y(a)

MR CYE2X OV TN ()

Observe that va(q)SC%b(q) implies that g, (q) in (12) has
smaller variance than gr-(q) in (9) whereas vb(q)gcab(q) imp-

lies that ébK(q) in (13) has smaller variance than g (@) in (9).

Experience with this method of estimation indicates
that for moderately high component reliabilities vi (q)<c,y (q)
is often satisfled with substantial reductions in variance at
each q in 4 as compared to the results from importance
sampling at a point in Section 3.1. Moreover, all these
estimates follow from just one sampling experiment at p. The
presentation will also describe a procedure for choosing the p
for sampling optimally, a method of computing confidence
intervals and an example.
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