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ABSTRACT

Some new quantile estimators that employ a control variate
are introduced. The properties of these estimators do not depend
on the usual assumption of joint normality between the random
variable of interest and the control. Empirical results are

presented.
1. INTRODUCTION

Let Y be a random variable with an unknown distribution
Fy, but for which realizations can be obtained. This paper
considers estimating the value yq such that P{Y <yq} = q for
prespecified q (0 < q < 1). (We assume Y is absolutely
continuous at yq.) The value yq is called the gt quantile of Y.
Much of the literature on simulation output analysis concentrates
on estimating E[Y], the long run average of Y. Quantiles
provide additional information about the distribution of Y. In
fact, in some problems, instead of the expected value of Y, the
quantiles of Y are the parameters of primary interest.

For example, Y could be a proposed test statistic whose
distribution under the null hypothesis is difficult to evaluate
numerically. One might then be interested in estimating the
critical values y.90, ¥.95, ¥.99 by simulating Y under the null
hypothesis. ’

As a second example, Y might be the delay in queue
experienced by a customer arriving to a service system. Then
50% of the customers experience delays less than y sg, but 5%
of the customers experience delays longer than y gs.

Straightforward estimation of yq is based on the order
statistics of the Y's (see Section 2 below). However, sometimes
one can observe a second, control, random variable X which is
statistically dependent on Y and whose qeh quantile xq is known.
Section 3 presents improved estimators based on simulated pairs
(X,Y) and xq. Section 4 presents the results of empirical
comparisons. Some conclusions are offered in Section 5.
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2. THE STANDARD METHOD

Let Y3, Y2, ..., Yn be an independent and identically
distributed (i.i.d.) sample from a distribution Fy that is
absolutely continuous at yq. Let Y(5) < - <Y, be the sample
Y values ordered from smallest to largest; these are the order
statistics of the sample. If k = [nq] +1, where [-] is the largest
integer function, then Y[k is a standard estimator of ¥q (see
David 1981 and Juritz, Juritz and Stephens 1983 for properties
of this estimator). In practice, instead of being restricted to a
particular order statistic, one may want to interpolate. In this
study we utilize the quantile function of the S statistical package
gBecker and Chambers 1984), in which Y is taken to be the

n
elsewhere (except when ng < 0.5, in which case the estimator is

th sample quantile, and linear interpolation is employed

Y@y, orng>1- -'I—f-, in which case the estimator is Y(m)). We

call this interpolated estimator the "no control variate" (No CV)
estimator.

From a different point of view, a uniformly best estimator
for yq among median unbiased estimators based on the Y's that
assumes no knowledge of Fy can be obtained by inverting one-
sided sign tests (Lehmann 1986, pp. 94-95 and pp. 120-121).
A median unbiased estimator is defined by the property thatitis

as likely to be greater than the true parameter value as it is likely
to be less, i.e., the true parameter is the median of the estimator.
This best median unbiased estimator is typically an estimator that
randomizes between Y (k) and Y (k.1) or Yx+1). However, by the
Rao-Blackwell Theorem, a nonrandomized version with smaller
risk relative to any convex loss function (such as the mean
square error) can be obtained by taking the conditional
expectation with respect to some sufficient statistic, the set of
order statistics in this case. The resulting nonrandomized
estimator is then a linear combination of Yk and Yk.1) or
Y(x+1)- This nonrandomized estimator, which is no longer
exactly median unbiased, is typically different from No CV, but
probably not by much. Thus, the estimator No CV can be
thought of as approximately the best median unbiased estimator
based on Y's only.
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3. CONTROL VARIATE ESTIMATORS

Control variates (CVs) is a well known variance reduction
technique that estimates some characteristic of Y by exploiting
knowledge about a random variable X which can be observed
simultaneously with Y, and which is statistically dependent on
Y. See Bratley, Fox, and Schrage (1987) for an introduction to
CVs. We now assume that there exists an X such that (X,Y)
has a joint distribution Fx y which is absolutely continuous at
(g, Yq)» where the qzh quantile xq of the marginal distribution of
X is known, and

(XI,Y]_), (XZ’Y2)3 ey (Xn:Yn),

an i.i.d. sample of (X,Y), can be observed. In this section we
develop estimators of yq based on simulated pairs (X,Y) and xq.

Let X(1) < X(2) < ... < X(n) denote the order statistics of the
X's and let Y3y <+ < Y(y) denote the order statistics of Y's.
We also let X(0) = X(1), Y(0) = Y(1)» X(n+1) = X(n)» and Y(n+1) =
Y (n), for convenience.

3.1 A Regression-Based Estimate

In addition to the familiar concepts of correlation, there are
several other concepts of bivariate dependence that are relevant
to our problem. The following definitions and results can be
found in Tong (1980).

Definition 3.1. Y is positively
dependent on X if P{Y <y | X = x} is nonincreasing in x for
all y, i.e., the family of conditional distributions P{Y <y X =
x} indexed by x is stochastically increasing in x.

regression

Definition 3.2,
Cov(g1(X.,Y), g2(X,Y)) 2 0 for all g1 and gy monotonically

X and Y are associated if
nondecreasing in each argument.

Lemma 3.1 If Y is positively regression dependent on
X, then X and Y are associated.

Lemma 3.2. Nondecreasing functions of associated
random variables are associated.

It is not unusual for an X to exist such that Y is positively
regression dependent on X. Thus, by Lemma 3.1, X and Y are
associated, Then by Lemma 3.2, X() and Y ) from a random
(i.i.d.) sample of (X,Y) are also associated (see Theorem 5.2.2
of Tong 1980). Finally, by the definition of association,
Cov(X(x), Y(k)) 2 0. Thus, if we assume that, as is sometimes
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done for simplicity in practice, E[Y | X=x] is nearly linear, then
we obtain the classical control variate estimate Yk) - B(X(x) - Xg)
(e.g. Hammersley and Handscomb 1964, Chapter 5; Bratley,
Fox and Schrage 1987, Chapter 2), which under the assumption
of positive regression dependence might be expected to do better
than the estimator Y(x). In this paper we fix B = 1, which is
equivalent to assuming that the regression has slope 1;
estimating the optimal value of § requires partitioning the size n
sample into subsamples, and we consider single sample
estimators here. We refer to this estimator as the "regression
estimator" (Reg).

3.2 A Maximum Likelihood Estimator

Two familiar general methods of estimating an unknown
parameter 6 are as follows. One is the maximum likelihood
method. In this section, it is shown that, even with no
knowledge of the joint distribution of X and Y, it is still
possible to apply the maximum likelihood method to estimate yq
to some extent. Another general method of estimation is to base
the estimator on tests. The Hodges-Lehmann method derives
estimators of 6 by considering statistical tests for all possible
hypothesized values of 8, and, having observed the data, setting
the estimator to be the value 8* for which the observed p-value
of the test is maximum, i.e., p-value(H: 6 = 6*) = maxgy p-
value(H: 6 = 0). The more powerful the family of tests, the
more efficient the estimator. In Sections 3.3 and 3.4, using the
Hodges-Lehmann method, we derive estimators of yq by
inverting tests for hypothesized values of yq based on observed
pairs (X,Y), and x4.

We can visualize the observed data in the (X,Y) plane as
follows. Each hypothesized value ¢ of yq corresponds to a

horizontal line Y = ¢ which, together with the known vertical
lineX = Xgs divide the (X, Y) plane into four quadrants (see, for

example, Figure 1). For notation, let
Noo(c) = number of X, Y) with X < Xq and Y<c

Npi(c) = number of X, Y) with X < Xq and Y>c¢

Njglc) = number of (X, Y) with X > Xq and Y <c
Nj(c) = number of (X, Y) with X > Xq and Y >c.

The Njj(c), i, j = 1, 2, are random variables. Let ngo(¢), ngy(C),
nyp(c), nyy(c) be their realized values. Intuitively, if no
knowledge is assumed concerning the joint distribution Fx v of
X and Y, then the essential information concerning ygq is

contained in the four numbers Ngg, No1, N1g, and Nij.
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Figurel: Sample Scatter Plot of 100 (x,y) Pairs
For a hypothesized value ¢ of yg, let
Poo(e) =P{X <xqand Y <c}
po1(0) = P{X <xgand Y >c}

p1o(c) =P{X > Xq and Y <c}

p11(0) =P{X>xqand Y >c}.

If ¢ is the true value of yg, then poi(c) = p10(c) = p (say).
Therefore the likelihood function of yq is

n .
(noo(c) np1(c) n10(c) n11(c))
(g-p)P0o(@)pno1(e)+n10(c)i(1-q-p)11(c)

= k(n;c)g(n;c,p) (¢
where k(n;c) is the multinomial term and g(n;c,p) is the product
of probabilities. Notice that p is a nuisance parameter and ¢ is
the parameter of interest.

Let0<p*<landc*e {1,...,n} bethe valuesof pand ¢
that maximize (1). No closed-form expression for (p*, ¢*) has
been found. However, for fixed c, the value of p, say p*(c),

that maximizes (1) is

(g(n-ngo(c)) - (1-q)(n-n13(e)?
2n

[(q(n-ngp(c)) - (l-q)(n-n11(c2)))2 + 4g9(1-q)n11(c)nge(e)] 12
n
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This is easily derived since, for fixed ¢, k(n;c) is a constant and
dg(m;e,p)
dp
for determining k(n;c) from k(n-1;c), which leads to an
algorithm that steps through the possible values of ¢, determines

= 0 is a quadratic in p. An efficient recursion exists

p*(c) and the corresponding value of (1) for each ¢, and sets c*
equal to the value that maximizes (1). This estimator, obtained
by maximizing this likelihood function with respect to yg, will be
referred to as Maximum Likelihood Estimator 2 (MLE 2).

\

3.3 An Approximately Median Unbiased Estimator

The hypothesis H: yg =c¢ is the same as H: pgo(c) + po1(c)
= polC) + P1o(®) (= ) or, equivalently, H: py;(c) = p1p(c).
Thus, estimators of yq can be obtained by tests of the hypotheses
H: pp1(c) = p10(c)-

An approximately median unbiased estimator of yq is
derived in this section by inverting uniformly most powerful
unbiased tests for H: pg1(c) = p30(©)

A different estimator of yq is derived in the next section by
inverting the likelihood ratio test for H: pg;(c) = p1o(c)-

To motivate the median unbiased estimator, consider Figure
1 which is a plot of a random sample of 100 pairs of X and Y; X
and Y are strongly dependent. The vertical solid line is X =
X 95, the known 95th'pexcenu'1e of X. The horizontal wiggled
line represents a candidate for y g5, the unknown 95th percentile
of Y. To estimate y g5 based on the Y's alone, we would put
the estimate somewhere between Y(os) and Y(gg). Observe,
however, that while the expected number of X's > x g5 is 5, in
this sample there are 8 X's > x g5. Because X and Y are
strongly dependent, one would guess that the number of Y's >
.95 in this sample is also 8, which would put y g5 somewhere
between Y gg) and Y(g3), as indicated by the dashed horizontal

line. More generally, a large difference between the number of
X's > xq and the number of Y's > ¢ is evidence against the

candidate value ¢ for ¥q- This idea forms the basis for the

median unbiased estimator, derived below.

Lemma 3.3. A uniformly most powerful unbiased
(UMPU) size-o test ¢ for H: ¥q = ¢ versus K: Yg>¢ based on

Ngo(e), Ng1(e), Nygle), Ny(c) exists. It is McNemar's test,

which is a conditional test that rejects for small values of Nyg(c),

conditional on N(¢) = Np;(c) + Nyg(c). Let b be the number
such that
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i = DO <

asb-1

5 (OO

1A

and tety= (- a1/ (") ()11 0 hat (tpep-y +
v-0p = . Let U be an independent uniform (0,1) random

variable. Then the UMPU test rejects if nyg(c) <b, orif U<y
when ny(c) =b.

Proof. The hypothesis and alternative H: yq = ¢ versus
K:yg>c¢ is the same as H: q = ppo(c) + po1(c) = poole) +
p10(©) versus K: g = poo() + Po1(©) > Poo(©) + p1o(e) or
equivalently H: pg;(c) = po(c) versus K: pg1(c) > pjofc), for
which the one-sided McNemar's test is UMPU (Lehmann 1986,
Section 4.9).

Similarly, the UMPU test ¢o* for H: yg = ¢ versus K:iyg<
¢ based on Nyg(c), Ng1(c), Nyp(c), Nyj(c) is the one-sided
McNemar's test which rejects if ng;(c) < b, or if U <y when
ngi(c) =b.

Thus, by the usual correspondence between tests and
confidence sets (Lehmann 1986, Theorem 3.4), yq~ =inf {c [ H:
¥q = ¢is accepted by 0¢’} is a level 1-a lower confidence bound
for ygq. Likewise, yq* = sup{c | m: yg=cis accepted by ¢t}
is a level 1-o. upper confidence bound for yq. One way to
derive a median unbiased estimator (an estimator which is as
likely to be greater than the true parameter value as it is likely to
be less) is to look for a common value of yq~ and yg* when o =
1/2 (Lehmann 1986, pp. 94-95). Let m = ngp + npy (which
does not depend on the hypothesized value ¢ of yg). When o =
1/2, each H: yq = ¢ with ¢ < Y(m) gives np1(c) > n1g(c) and
hence is rejected by ¢¢~. Each H: yq = ¢ with ¢ > Y1) gives
np1(c) < nyo(c) and is hence rejected by ¢¢*. Thus c e (Ym),
Y(m+1)) are the only candidate estimates. Every H: yq=c with¢
€ (Y(m)> Y(m+1)) gives no1(c) = nyp(c). Thus, H: yg=c¢is
accepted or rejected by ¢~ depending on whether its auxiliary
random variable U for ¢¢-is > 1/2 or not. The same H: yg=cis
also accepted or rejected by ¢c* depending on whether its
auxiliary random variable U for ¢¢* is > 1/2 or not. So if the
same auxiliary random variable U is employed for all the tests,
then yg~ and yq* have a common value which is either Y(m) or
Y(m+1) with probability 1/2 each. This randomized estimator
can be expected to have good properties, as it is derived from
UMPU tests. However, randomization is not very appealing in
practice. Further, according to the Rao-Blackwell Theorem

(Lehmann 1983, pp. 50-51), a nonrandomized version with
smaller risk (expected loss) relative to any strictly convex loss
function (e.g., mean square error) can be obtained by taking the
conditional expectation with respect to a sufficient statistic. The
Rao-Blackwellized estimator is (Y(m) + Y(m+1))/2. In our study,
instead of taking the midpoint of Y(m) and Y(m«1), we linearly
interpolate between (X(m), Y(m)) and Xm+1), Y(m+1)) at Xq.
(Also, when m = ngg + no1 = n, we take the estimate of yq to be
Y(n). When m =ngp + np1 = 0, we take the estimate of yq to be
Y(1).) In this study we refer to this approximately median
unbiased interpolated estimator as Med Unb.

3.4 A Cell-Probability Based Maximum Likelihood
Estimator

For fixed c, allowing for the possibility that H: yq =c is
false, the likelihood function, as a function of (pog, Po1, P10,
p12) and (ngofe), no1(c), n1o(c), n11(c)), is proportional to

ngo(e) ,no1(c) _n1o(c) n11(c)
Pooo "Po1 "Pip " Pii

= @200 p01 0 (1-q-prgyua €

The maximum likelihood estimators of pop and p1g are

A - no1
po1= nooFIo1

q

A mig ]
Plo—nl()_'*'nﬁ(l )

with asymptotic variance-covariance matrix

Ragpo)
n'l q
0 210(11-9-210)
-q

The asymptotic likelihood ratio test for H: pgi(c) = p1glc)
Po1(q-por) , P10(1-g-p10)

a  Iq
Zoy2, Where zgy2 is the (1-0/2)th quantile of the standard normal
distribution. The Hodges-Lehmann estimator based on this test
is then the value ¢ such that

therefore rejects if | oy - ﬁml/\/

1801 - ﬁlov\/ﬁmigﬁm) + ﬁ‘lo(ll-flciﬁlo)

is minimum (approximately 0). Note that ﬁm - ﬁlo is a step
function which decreases as ¢ increases passed each Y¢). We
take our estimate to be the largest ¢ such that  Po1 - P10 is
nonnegative, and refer to this estimate as MLE 1.
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4. EMPIRICAL RESULTS

In this section we compare the five estimators by simulation
using a variety of examples. The results are summarized using
boxplots, as well as the more traditional measures of
performance: mean square error (MSE), variance (Var), and bias
(Bias). The box in a boxplot contains the middle half of the data
(i.e., from the .25tk sample quantile to the .75t4 sample
quantile); a horizontal line is drawn through the box at the
median of the data; the whiskers extending from the box reach to
the most extreme non-outlier; outliers are plotted individually by
" All numerical studies were done on a Pyramid 90x super
mini-computer.

4.1 Linear Dependence Between X and Y

The first example is Y = X + g, where X is standard
normal, and € is normal with mean 0 and standard deviation 0.2.
Thus Y is positively regression dependent on X, and the
dependence is linear with a slope of 1. Figure 2 is a sample
scatter plot of 1000 pairs of x and y.

-1

-3

-4

Figure 2: Scatter Plot of 1000 (x,y) Pairs in Example 4.1

Using the statistical package S , 40,000 i.i.d. pairs of X
and Y were generated. We first divided the 40,000 pairs into
100 sets of samples of size n = 400, and applied the five
estimators to each of the samples of 400 to estimate y 95. Figure
3 shows the boxplots of the five estimators. In Figure 3, a
horizontal line is drawn through the entire plot at y g5, the true
.95th quantile of y, which is 1.645V1.04 = 1.67758.
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Figure 3: Boxplots of Estimates of y.g5 (n = 400)

Figure 3 indicates all four control variate methods do better than
the no control variate estimate (No CV). The regression estimate
(Reg) and the median unbiased estimate (Med Unb) perform
about the same, both better than the others. The five estimators
are also compared in terms of mean square error in Table 1
below, which further breaks down mean square error into
variance and bias (MSE = Var + Bias2). In terms of MSE, the
median unbiased estimator (Med Unb) is somewhat worse than
the regression estimator (Reg), but again better than the other
estimators.

Table 1: MSE, Var, and Bias of Estimates of y 95 (n = 400)

NoCV {MedUnb} MLE1 | MLE2 Reg

MSE | 0.01277 { 0.00472 | 0.00481 | 0.00488 | 0.00398
Var | 0.01276 | 0.00471 | 0.00481 | 0.00479 | 0.00395
Bias | 0.00155 | 0.00310 | 0.00167 {-0.00958 | 0.00495

To check how the sample size n affects the relative
performance of the estimators, we then divided the 40,000 (x,y)
pairs into 400 sets of samples of size n = 100, and applied the
five estimators to each sample of 100 to estimate y.95. Figure 4
shows the boxplots of the 400 sets of estimates that resulted.
Figure 4 indicates that, when the sample size n is smaller, the
performance of the median unbiased estimator (Med Unb) and
the regression estimator (Reg) remain roughly the same between
them, but become even better relative to the other estimators.

This is also true in terms of MSE, given in Table 2 below. Both
MLE 1 and MLE 2 exhibit median bias in Figure 4.
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Figure 4: Boxplots of Estimates of y 95 (n = 100)

Table 2: MSE, Var, and Bias of Estimators of y.g95 (n = 100)

NoCV |MedUnb| MLE1 | MLE2 Reg
MSE | 0.04638 | 0.01120 | 0.01686 | 0.01939 | 0.00981
Var { 0.04638 | 0.01120 | 0.01532 | 0.01636 | 0.00980
Bias | 0.00126 | 0.0022 { -0.0392 |-0.05509 | 0.00143

At least in this example, in which the linear functional
relationship between X and Y assumed by the regression
estimate (Reg) is exactly correct, not much is lost by using the
median unbiased estimate (Med Unb) which does not assume a
known functional relationship between X and Y. The next
example compares the estimators when the relationship between
X and Y has a large curvature around (xq,yq). In particular, it
shows that whereas the regression estimator (Reg) can behave
very badly, the median unbiased estimator (Med Unb) continues
to do well.

4.2 Nonlinear Dependence Between X and Y

The second example is Y = ( TUII—_X—' €)/100 where X is
Uniform (0,1) and € is Uniform (0,1/2). Again, Y is positively
regression dependent on X, but the dependence, especially
around the quantiles (x 95, y.95) = (0.95, 0.16418), is highly
nonlinear. Figure 5 is a sample scatter plot of 1000 (x,y) pairs.
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Figure 5: Scatter Plot of 1000 (x,y) Pairs in Example 4.2

Using the statistical package S, a random (i.i.d.) sample of
40,000 pairs (X,Y) was generated. We.then divided the 40,000
pairs (x,y) into 100 sets of samples of size n = 400, and applied
the five estimators to each sample of size n = 400 to estimate
y.95. Figure 6 shows the boxplots of the resulting 100 sets of

estimates.
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Figure 6: Boxplots of Estimates of y 95 (n = 400)
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In Figure 6, a horizontal line is drawn through y = 0.16418, the
true .95tk quantile of y. The boxplots show that the regression
estimator (Reg) does relatively poorly in this nonlinear setting,
while the approximately median unbiased estimator (Med Unb)
is outstanding. A similar conclusion can be drawn from Table
3, which displays the mean square error (MSE), variance (Var),
and bias of the five estimators.

Table 3: MSE, Var, and Bias of Estimators of y.g5 (n =400)

NoCV |MedUnb| MLE1 | MLE2 Reg

1.0618¢-3 [2.8469¢-5 |4.7839¢-5 |4.783%¢-5 |5.3414e-4
0.7551e-4 [1.5672e-6 4.5427¢-5 [4.5427¢-5 [4.4012e-4
9.2903¢-3 [5.1867¢-3 }1.5531e-3}1.5531e-39.6967¢-3

MSE

Bias

To check whether the relative performance of the estimators
is much affected by a smaller sample size n, we then divided the
40,000 pairs (x,y) into 400 sets of samples of size n = 100, and
applied the five estimators to each sample of size n = 100 to
estimate y,95. Figure 7 displays the boxplots of the 400 sets of

estimates that resulted.
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Figure 7: Boxplots of Estimators of y,95 (n = 100)

The horizontal line is again drawn through y = 0.16418, the true
95tk quantile of y. The relative performance of the estimators is
similar to the n = 400 case, a conclusion that can be drawn from
Table 4 below, also.
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Table 4: MSE, Var, and Bias of Estimators of y 95 (n = 100)

NoCV [MedUnb| MIE1 | MIE2 Reg
4.5942e-3 [1.7372e-416.5116e-4 [6.5116e-4 |4.5703e-3
4.3064e-3 [7.4569¢-5 {3.3023e-4 [3.3023e-4 [4.2813e-3
1.6965e-219.9576e-3 }1.7915¢-21.7915¢-2{1.7002¢-2

MSE
Var
Bias

In the course of our study, we found that the two likelihood
function based estimators, MLE 1 and MLE 2, tend to behave
similarly and, to a lesser extent, the no control variate estimator
(No CV) and ‘the regression estimator (Reg) tend to behave
similarly. This phenomenon is very pronounced in this
nonlinear example, as shown in Figure 8, noticeable but less
pronounced in the other examples

MLE1 MedUnb

MLE2

Reg
\\

Med
Unb

No
cv

Figure 8: Pairwise Scatter Plots of Estimators of y g5 (n = 100)

4.3 Systems Simulation Example

The M/M/1 queue is a single server, first-come-first-served
service system in which customers arrive according to a Poisson
process and service times are i.i.d. negative exponential random
variables. Let Y be the delay in queue (not including service)
experienced by the [ th (/ > 0) customer to arrive to an M/M/1
quene that had h = 0 customers present at time 0. The control
variate X is the sum of the service times of the first /+h-1
customers; i.e. the customers arriving before the Ith customer.
The distribution of X is Erlang, and the distribution of Y is &
mixture of Erlangs (Kelton and Law, 1985).
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Observations (X,Y) were generated by a FORTRAN
simulation using IMSL subroutines ggamr and ggexn to generate
interarrival and service times. The value of x 95 was obtained
from the S function ggamma. The cdf of Y was evaluated using
the algorithm of Kelton and Law (1985). The examples below
are an M/M/1 queue with arrival rate .9 customers/unit time,
service rate 1 customer/unit time, and h = 0 customers present at
time 0. We consider the delay in queue of the 10zA arriving
customer,

Figure 9 shows a plot of 1000 pairs (x,y). While Cor(X,Y)
is unknown, the sample correlation based on 40,000 pairs was
713, which seems to indicate strong dependence. However,
the boxplots in Figures 10 and 11, for 100 size n = 400 samples
and 400 size n = 100 samples, respectively, shows little
improvement for the control variate estimators over the No CV
estimator. The corresponding Tables 5 and 6 show how small
the improvement is in terms of MSE. Clearly, large correlation
by itself is not enough to insure improved estimator performance
for these control variate estimators. On the other hand, it is
encouraging that the control variate estimators do not seem to do

worse than No CV.
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Figure 9: Scatter Plot of 1000 (x,y) Pairs (h = 0) in Example
43

Table 5: MSE, Var, and Bias of Estimates of y 95 (h=0,n=

400)
NoCV [MedUnb| MLE1 MLE2 Reg
MSE | 0.25373 | 0.20469 { 0.17396 | 0.16887 | 0.19937
Var | 0.25310 | 0.20381 | 0.17394 | 0.16885 | 0.19885
Bias | 0.02498 | 0.02957 |-0.00456 { 0.00363 | 0.02278
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Figure 10: Boxplots of Estimates of y g5 (h =0, n = 400)
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Figure 11: Boxplots of Estimates of y 95 (h =0, n = 100)

Table 6: MSE, Var, and Bias of Estimates of yg95 (h =0,n =

100)
NoCV |{MedUnb| MIE1 MLE2 Reg
MSE | 0.74743 | 0.66530 | 0.63485 | 0.61128 | 0.62466
Var | 0.74665 | 0.66330 | 0.63218 | 0.61088 | 0.62252
Bias { 0.02780 | 0.04476 |-0.05163 | 0.01998 | 0.04627

4.4, Bivariate Gamma Example

The pairs (X,Y) have the bivariate gamma distribution of
Schmeiser and Lal (1982). This distribution allows any gamma
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marginals with any feasible correlation. Schmeiser and Lal's
bivariate gamma generator, gbiv, was coded in FORTRAN
using IMSL functions dcadre for the numerical integration
needed to determine parameters, and ggamr for univariate
gamma generation. The bivariate gamma provides another
example where E[YIX=x] is nonlinear. The values of x 95 and
v.95 were obtained from the S function ggamma.

Figure 12 shows a scatter plot of 1000 pairs (x,-y), where
X and Y have identical univariate gamma marginal distributions
with shape parameter 5 and scale parameter 1. The Cor(X,Y) =
-.8, so that Cor(X,-Y) = .8. Based on the scatter plot this
example appears to be in between the linear and nonlinear
examples 4.1 and 4.2, respectively; that is, nonlinear
dependence between X and Y, but not so pronounced.

We estimated the .95t quantile of -Y, which is equivalent
to estimating the negative of the .05th quantile of Y. Figures 13
and 14 are the boxplots of the distributions of the five estimators
for 100 size n = 400 samples and 400 size n = 100 samples,
respectively. The corresponding Tables 7 and 8 quantify the
performance in terms of mean square error, variance, and bias.
As in example 4.2, nonlinearity caused the regression estimator
(Reg) to perform badly. The other three control variate
estimators are superior to No CV, with the approximately
median unbiased estimator (Med Unb) possibly somewhat better
considering both bias and variability.
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Figure 12: Scatter Plot of 1000 (x,y) Pairs in Example 4.4
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Figure 13: Boxplots of Estimates of y 95 (n = 400)

Table 7: MSE, Var, and Bias of Estimates of y.95 (n =400)

NoCV {MedUnb| MLE1 MLE2 Reg
MSE | 0.01974 | 0.01173 | 0.01156 { 0.01182 | 0.08610
Var | 0.01901 | 0.01170 | 0.01134 | 0.01157 { 0.08447
Bias |-0.02711 | -0.00556 {-0.01511 {-0.01599 | 0.04035
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Figure 14: Boxplots of Estimates of y 95 (n = 100)

Table 8: MSE, Var, and Bias of Estimates of y 95 (n = 100)

NoCV [{MedUnb| MLE1 | MLE2 Reg
MSE | 0.06314 | 0.03847 | 0.04032 | 0.04044 | 0.28204
- Var | 0.06206 | 0.03801 | 0.03788 | 0.03990 | 0.28164
Bias {-0.03286 [-0.02157 | -0.04938 | -0.02324 | 0.02016
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5. CONCLUSIONS

Variance reduction research has concentrated on estimating
population means and variances, which are but two of the
characteristics of the population (see Nelson 1987a for a
survey). Quantiles provide additional information about the
population, and can in fact be the parameters of primary interest
in certain problems. Thus, it is important to develop good
techniques for estimating quantiles.

Techniques based on regression have been the primary
focus of control variate research (Glynn and Whitt 1987, Nelson
1987b, and Rothery 1982 are some exceptions). Our viewpoint
is that regression techniques are unnatural for estimating
quantiles, because it is unnatural to think of quantiles as
expected values. We propose quantile estimators that are based
on estimating the joint probablistic behavior of the variable of
interest and the control variate instead.

The empirical study presented here shows the three new
control variate estimators to be promising. Further, the study
shows that, in quantile estimation, the Pearson correlation
between the control variate and the variable of interest is not a
good predictor of success or failure in variance reduction. For
this problem, other concepts of bivariate dependence, such as
regression dependence and association, may be at least as
relevant. Finally, in evaluating the performance of estimators,
simple graphical techniques such as boxplots add valuable
information to the usual measures of mean square error,
variance, and bias. Boxplots allows one to assess median
biases, concentration of the middle 50% of the distributions, and
tendencies for outliers.
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