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ABSTRACT

This paper presents the development of a simula-
tion tool to assist the modeler of prelaunch countdown
sequences define the problem and then automatically
write the corresponding code in the target simulation
language GPSS/PC. Included in this paper are a
description of the Automatic Network Programming
System (ANPS) and a sample problem using ANPS.

INTRODUCTION

There has been a considerable interest in
improving the process of simulation model development.
One area of interest is the development of simulation
support environments. Henriksen (1983) suggests a
simulation software development environment composed
of a set of integrated software tools. Standridge
(1983) proposes the integration of software tools and
databases management techniques on each stage of the
simulation model development process. Pidd (1984)
also outlines a simulation support environment concept
for handling one simulation problem at a time.

Overstreet and Nance (1985) emphasize the need of
a specification language to assist in analysis of
discrete event simulation models. Balci (1986)
describe the requirements for general model develop-
ment environments with focus on discrete event simula-
tion wmodeling. Balci and Nance (1987) report a
simulation support system for prototyping the automa-
tion-based paradigm. Rozenblit and Ziegler (1985) set
up a conceptual framework for constructing knowledge-
based, computer-aided environments for system analy-
sis. Ziegler (1987) develops an object-oriented
environment for hierarchical, modular discrete-event
modeling.

A second area of interest is the automation of
the simulation modeling process. The two main stages
in the oprocess are problem and code generation.
Automatic Programming concepts are used in this area.
Automatic Programming (AP) has been defined as the
automation of some aspects of the computer programming
process (Barr and Feigenbaum 1982). This automation
is generally accomplished by developing another
program, an automatic programming system, that raises
the level of specifying computer program instructions.
In other words, an AP system helps programmers write
programs. Shooman (1983) have indicated that AP tech~
niques consists of a dialogue between the designer and
the computer that integrates existing software modu-
les, or subroutines, into a main program to obtain
reliable, moderately efficient program code.

An AP system should improve the overall environ-
ment for defining and writing programs (Brazier and
Shannon 1987). Consequently, there should be a reduc-
tion in the amount of detail that the programmer needs
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a more natural way for the user to define his problem
and in a way that more closely resembles his way of
thinking and looking at problems.

A number of attempts have been made at developing
AP systems. One of the earliest was the Natural
Language Programming for Queuing Simulations (NLPQ)
(Heidorn 1974). Using an interactive dialogue, the
NLPQ system created an internal description of the
problem. From this internal description, the system
generated the simulation code in the target language
GPSS. The Electronics Manufacturing Simulation System
(EMSS) (Ford and Schroer 1987) uses a natural language
interface to define electronics assembly processes and
then automatically writes SIMAN simulation code.

Brazier and Shannon (1987) have developed an AP
system for modeling automated guided vehicle systems
(AGYS). The system uses an interactive dialogue to
define the AGVS. The system is written in Turbo
Prolog for the IBM/PC. Once the AGVS has been
defined, the system writes the corresponding SIMAN
code. A Knowledge Based Model Construction (KBMC) has
been developed to automate queuing model building and
code generation (Murray and Sheppard 1988). Through
an interactive dialogue the KBMC defines the problem
specification and then automatically writes the SIMAN
simulation code.

DRAFT is a program generator tool to assist the
user to write simulation code (Mathewson 1984). The
system also uses an interactive user dialog to soli-
cit model parameters.

RESEARCH OBJECTIVE

In the 1960's, the Boeing Company (Synder et al.
1967) developed a simulation of the Saturn V prelaunch
acctivities starting at T-24 hours and going through
T-0. The simulation model consisted of over 1100
vehicle components and 400 ground support equipment
components. A detailed time line was initially deve-
loped for these components. Next, the operations
data, reliability data, and maintenance data were
defined and input to the model. The principal model
output was the probability of Tlaunching a vehicle
within a given launch window. The model was written
in GPSS-II and ran on the IBM 360.

The original Boeing model was expanded to include
muTtiple Taunch windows and the operational sequence
when a launch window was missed and the vehicle had to
be recycled to the next launch window {(Schroer 1969).
This model consisted of two sequences: a main
sequence identical to the original model, and a
recycle sequence. The main sequence consisted of
those events in the planned countdown between T-26
hours and T-0. The recycle sequence consisted of a
number of backout sequences containing those events



required to return the countdown to some preceding point.
The recycle sequence also consisted of a recycle hold
containing those events required to sustain the
vehicle status at a particular time in the countdown.
The model was written in GPSS-II and contained 2300
blocks.

Figure 1 is a system overview of the major ele-
ments within a launch vehicle models. The knowledge
base supporting the system contains the launch vehicle
definition and operations, ground support equipment
definition and operations, system maintenance parame-
ters, and systems reliability parameters. The data
from the knowledge base are used to define precedence
relationships, dependency relationships, and activity
times and to then construct the sequence of activi-
ties, or the time line. Figure.2 is a portion of a
typical final time Tline. The system reliability and
maintenance data are used to define the mean time to
failure and mean time to repair for each activity and
the corresponding types of distribution. The time
Jine and reliability and maintenance data are then
used in constructing the simulation model of the net-
work. The experimental parameters are added and the
model executed. The model results are used in con-
ducting various trade studies of the prelaunch count-
down operations.

After a review of the literature, it appears that
the above class of network, or prelaunch countdown
sequence, problems can be solved with these new auto-
matic programming techniques. Furthermore, it appears
that by using AP techniques, these problems can be
solved more quickly and can be more easily verified
and validated. The end result would be improved model
clarity, increased productivity, rapid prototyping and
easier system maintenance.

The goal of the research presented in this paper
is to develop a simulation tool to assist the modelers
of prelaunch countdown sequences define and develop
the problem specification and then automatically
generate the corresponding GPSS simulation code. This
simulation  tool is called Automated Network
Programming Systems (ANPS).

AUTOMATED PROGRAMMING SYSTEM

The ANPS system is designed using the techniques
of the automatic programming as its foundation. The
ANPS system s built on the interactive dialogue
approach to create a main program that includes the
appropriate calls to the selected subroutines. The
ANPS system consists of the following elements:

-]

Interactive user interface program

o

Automatic code generator program
° Library of GPSS/PC subroutines or macros

Figure 3 is an overview of the ANPS system opera-
tion. Once the user has defined the problem domain,
the user sits at a personal computer and responds to
questions from the interactive interface program.
Based on the responses, the interface program creates
an internal problem specification file. This file
includes the time line for the network, the attributes
for the activities, and the dependent relationships
between the activities. The problem specification is
then used as input by ANPS to the automatic code
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generator program. The code generator program selects
and interfaces the appropriate macros from the GPSS
library and then generates the simulation code for the
main program in the target language GPSS/PC.

The output of the code generator program is a
GPSS/PC program file. The experimental frame, such as
the run statements, are then added and the GPSS
program executed. To change the GPSS model, the user
must recall the problem specification file. The
interface program provides the user with a number of
options to change or modify the problem specification,
including a text editor to directly change the GPSS
code.

The ANPS system 1is written 1in Turbo Prolog
(Borland 1986) for the IBM class of personal computer.
The library of macros is written in GPSS/PC.  ANPS
contains 1,218 lines of Prolog code and 86 subrouti-
nes. The simulation code generated by ANPS is GPSS/PC
(Minuteman 1986).

Library 6f GPSS Macros. The power and robustness
of an automatic programming system, such as ANPS, is
its library of macros or subroutines. This library of
macros is generally domain specific. When new macros
have been defined, expert programmers are needed to
write the code and to assure the proper interfaces.

The following functions are currently contained
in the ANPS library of macros:

° Activity-event interation function

° Activity failure function

° Fixed activity operation function

° Continuous activity operation function

The activity-event interaction function ensures
that all the activities are performed and events are
achieved according to the precedence relationships.
Each node, or event, will not occur until all the
incoming activities have been performed. After all
incoming activities have been completed, the event
triggers all the outgoing activities.

The activity failure function simulates an acti-
vity failure. When an activity fails, the activity
also causes its dependent activities to enter a hold
state. The time to repair (TTR) the facility is
generated to determine the failed activity's own
interruption time. For the dependent activities that
are active at the time of failure, TTR is their
interruption, or hold time. On the other hand, if an
activity has already been interrupted at that time,
the interruption time is determined by the longer time
of the TTIR and the time caused by the previous
interruption.

The fixed activity time operation function
simulates the operation of each fixed activity. This
function also generates the time to failure (TTF) of
the activity. If the activity fails during its opera-
tion, the transaction is forwarded to the activity
failure function.

The continuous activity time operation function
simulates the operation of each continuous activity.
The completion of a variable activity depends on other
activities incident to the same ending node. The
activity is not completed until those other activities
are completed. If the activity fails the transaction
is forwarded to the activity failure function.
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System_Constraints. The following constraints
are imposed on the ANPS system:

o

An activity failure will cause the activity to
be delayed wuntil the failure has been
repaired.

A1l dependent activities will also be delayed
for the same time until the failure has been
repaired.

If another activity fails during the delay of
a dependent activity and the dependent acti-
vity is also dependent on the just failed
activity, the additional time to repair, if
any, is added to the delay of the dependent
activity.

A dependent activity that has been delayed
cannot fail during the delay time and wil not
cause other dependent activities to be
delayed.

EXPERIMENT

Figure 4 describes a time 1line for a typical
countdown sequence problem consisting of six fixed
activities and one continous activity. The dotted
Tines indicate time 1line constraints. For example,
activities ACT5 and ACT3 must be completed before
starting ACT6. This time line can be redrawn in the
form of a network diagram as shown in Figure 5. Note
that activities ACT2, ACT4, and ACT7 are on the criti-
cal path.
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Figure 4. System time line
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Table I gives the time parameters for the activi-
ties. These parameters include activity duration,
time to failure, and time to repair. Note that acti-
vity ACT1 has a variable operation time. That is,
this activity will operate during the entire duration
of the system. An example of a variable activity is
system power. System power may be required during the
entire system operation and may be essential to a
number of specific activities.

Table II gives the operational dependencies bet-
ween the activities. In other words, the table shows
the effect of an activity failure on other activities
in the system. For example, a failure of activity
ACT1 will cause a stopping of activities ACT2, ACT5,
ACT6, and ACT7. Likewise, a failure of activity ACT3
will cause a stopping of activities ACT2 and ACT4.

Figure 6 contains a partial 1listing of the
interactive user dialogue for defining the network.
This dialogue is for defining activity ACT1, which
starts at node 1 and ends at node 5. The activity
type is variable, the time to failure follows an expo-
nential distribution with mean of 60, and the time to
repair follows the normal distribution with a mean of
20 and standard deviation of 2. Activity ACTl has
four dependent activities; ACT2, ACT5, ACT6, and ACT7.

Figure 7 1is a partial listing of the main GPSS
program for the network in Figure 5 that was automati-
cally generated by the ANPS system. Note that the
network is constructed by a series of TRANSFER, SPLIT,
and ASSEMBLE blocks. For example, line 2012 is the
start of activity ACT1l. Line 2013 splits one transac-
tion to Tline 2019 and starts activity ACT2. Line 2020
splits another transaction to start activity ACT3.

The output from the simulation is the distribu-
tion of time to complete the prelaunch countdown
sequence. In the example in Figure 4, the system time
is 200. Therefore, if any failures occur, the system
time would increase into the launch window, or beyond
T-0. These increased time can then be used to compute
the probability of 7launching within a given Tlaunch
window.

CONCLUSIONS

The Automatic Network Programming System (ANPS),
once fully operational, has the potential for use in
rapidly modeling reliability networks. Specific
applications for ANPS are in modeling prelaunch acti-
vities of space vehicles, ground support equipment
space vehicle turn around plans, space transportation
systems and operational planning, and hardware systems
with multiple subsystems.

Activity Duration Time to Failure Time to Repair
ACT1 Variable E(60) N(20,2)
ACT2 60 E(30) N(10,1)
ACT3 100 E(30) N(10,1)
ACT4 100 £(20) N(10,1)
ACTS 40 E£(400) N(20,2)
ACT6 50 E(100) N(10,1)
ACT7 50 E(40) N(10,1)
Table I. Activity Time Parameters

Dependent Activities

Activity ACT1 ACT2
ACT1
ACT2
ACT3
ACT4
ACTS
ACT6

ACT?

ACT3 ACT4 ACTS ACT6 ACT7

X X

X

X

Table II. Operational Dependencies Between Activities

3
mean time H
standard deviation ]
Number of dependent activities 1

20,
2
4

Name of dependent activity 1: $ACT2

Name of dependcnt activity a: SACT?

Nasme for GPSS Program 3 EX1.GPS
1. Number of activities (max 50} s 7
2. fActivity attributes: ————Type Description
Activity name 3:$ACT1 A fived activity is in
Activity type (fixed/variable) F/V 1 V operation for a defined time
Duration distribution type t UNKNOWN|following a given distribution.
mean time t UNKNOWN
standard deviation t UNKNOWN A variable activity is in .
Starting node number s 1 operation for the duration of
Ending node number t S an activity ar multiple
MTTF distribution type 1 EXF activities.
mean time t 6Q
MYTR distribution type NOR

Type—
FIXED
VARIABLE

Figure 6.
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Partial listing of interactive user dialogue



19250 %

1935 % MAIN NETWORK
1940 %

1945 GENERATE wrsl

1950 MORE  SFLIT 1,4

1955 GATE LS SWITCH_MORE

1960 LOGIC R SWITCH_MORE

1965 TRANSFER +MORE -
1970 MM MARK SYSTIME

2000 EVL ADVANCE N
2001 TRANSFER 3

2002 EV2 ADVANCE

2003 TRANSFER .

2004 EV3 ASSEMBLE 2

2005 TRANSFER Y3

2006 EV4 ASSEMBLE 2

2007 TRANSFER s A7

2008 EVS ASSEMBLE 1

2009 LOGIC S SWITCH_END1

2010 EEVS  ASSEMELE 2

2011 TRANSFER ,END1

2012 A1 ASSIGN 2,$ACT1

2013 SPLIT 1,A2

2013 ASSIGN 3,1

2016 LOGIC R SWITCH_END1

2017 TRANSFER SER, VENT_B, RTRN2
2018 TRANSFER s EEVS

2019 A2 ASSIGN 2, $ACT2

2020 SPLIT 1,A3

2021 ASS1GN 3,2

2023 TRANSFER SBR, VENT_A, RTRN2
2024 TRANSFER JEV2

2025 A3 ASSIGN 2,$ACT3

2026 ASSIGN 3,3

2028 TRANSFER SBR, VENT_A, RTRN2
2029 TRANSFER JEV3

2031 A4 ASSIGN 2,$ACT4

2032 SPLIT 1,A5

2053 ASSIGN 3,4

2035 TRANSFER SBR, VENT_A, RTRN2
2036 TRANSFER JEV4

2037 A% ASSIGN 2,$ACTS

2038 ASSIGN 3,5

2040 TRANSFER SBR, VENT_A, RTRN2
2041 TRANSFER JEVI

2043 A4 ASSIGN 2,$ACTé

2044 ASSIGN 3,6

2044 TRANSFER SER, VENT_A, RTRN2
2047 TRANSFER EV4

2049 A7 ASSIGN 2,%ACT7

2050 ASSIGN 3,7

2052 TRANSFER SER ,VENT_A, FTRN2
2057 TRANSFER JEVS

2055 END1  TABULATE SYSTIME

2056 SYSTIME TABLE MP$SYSTIME, 0,50, 50
2057 LOGIC § SWITCH_MORE
2058 TERMINATE 1

Figure 7. GPSS Tisting of main program

There are a number of potential advantages of an
automatic programming system such as ANPS. These
advantages include:

¢ Improved Clarity - The GPSS code generated by
ANPS 1is a structured simulation code that is
easy to read, trace, and modify.

Increased Productivity The ANPS system
should result in a significant increase in the
Tines of simulation code written per hour.

Rapid Prototyping - Given the availability of
the necessary macros, the system permits rapid
prototyping. In addition, the system produces
executable simulation code that s syntax
error free.

Egsjef Maintenance - The structured approach
minimizes the effort required in locating
errors and making program modifications.

Reduced Modeler Knowledge Hopefully the
modeler*s knowledge of the target simulation
language should be reduced.
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The ANPS system uses the interactive user dialo-
gue to assist the modeler define the problem specifi-

cation. The interactive user interface:
® Provides for a structured procedure for
acquiring information on the system being
modeled.

° Expedites the definition of the problem speci-
fication.

° Assures a complete and detailed definition of
the problem specification.

In contrast to the advantages, there are also
several disadvantages. One disadvantage, and probably
the most significant, is that ANPS is domain specific.
Another problem is that similar domains may require
additional new macros or subroutines. An experienced
GPSS simulationist must then be used to write the code
for these macros. Another disadvantage is that the
ANPS system regquires more memory and execution time
than a nonstructural equivalent program. However,
this disadvantage is not as significant as in prior
years because computers are becoming faster and have
more memory. A fourth disadvantage is the user atti-
tude problem of learning something new and different.

In summary, the ANPS system is still in the
research stages of development. Hopefully, some day
these types of automatic programming techniques will
move from the research stages to actual implementation
and operational use by the end user.
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