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ABSTRACT

Icon-based simulation program generators
for manufacturing allow the modeler to build
simulation programs by placing pictures
(icons) of machines and material handling
equipment on the display and indicating the
material flows between the entities that the
icons represent. An icon-based simulation
program generator has been written that allows
groups of icons and the interconnections
between them to be archived and copied as
units called 'subsystems'. This paper
describes how to build software that supports
creation and manipulation of subsystems.
Hierarchical, modular simulation modeling can
be done with a simulation program generator
with subsystem management features. This
makes possible a high degree of reuse of parts
of simulation programs.

1. SIMULATION PROGRAM GENERATORS

The practice of simulation is highly
dependent on software engineering, since a
computer simulation is a computer program. A
large part of the work in a simulation study
consists of writing, testing and debugging
that program. Even though simulations are
usually written in special simulation
languages, they are like programs written in
any language in that they are time~consuming
and labor intensive to write, test and debug
(Boehm 1987). This is an important factor
that limits the applicability of computer
simulation as a modeling and analysis tool.
Another factor is that simulation programs
usually require large amounts of computing
resources to run.

Several new developments have addressed
the problem of how difficult it is to write
simulation programs. Use of animation makes
it easier to debug, verify and validate
simulation programs (Kilgore and Healy 1987).
There are simulation program generators (SPGs)
that automatically build simulation models,
using static tabular descriptions of systems
as input (Ulgen 1983). Rough modeling tools
such as MANUPLAN (Suri 1988) take this
approach, but build analytic models instead of
simulation mddels.

There is a trend in manufacturing
simulation toward the use of SPGs that can be
thought of as icon-based or object-oriented.
In packages like XCELL+ (Conway and Maxwell
1987) and SIMFACTORY (Tumay 1987) simulations
are constructed by instancing and

254

interconnecting primitive elements such as
workstations, conveyors, buffers, and
receiving stations. Each of these primitive
element types is represented by an icon and
corresponds directly to a class of familiar
objects in real manufacturing systems.
Icon-based SPGs can be used by engineers who
have no special expertise in simulation. They
do not require programming. They may allow
interactive simulation, as WITNESS does
(Gilman and Watremez 1986), in the sense that
the model can be easily modified while the
simulation programs are run. Graphics is used
to shorten the time required to develop a
model and to aid in understanding the results
of the simulation, using animation.

Productivity in building simulation
models can be further enhanced if some
mechanism is available to allow reuse of
previously developed simulation models.
Bernard Zeigler (1984) has developed a theory
of hierarchical, modular discrete event
simulation models called the DEVS formalism.
When it is implemented in an SPG it provides a
very powerful software reuse mechanism. In
this paper we will show how ideas from the
DEVS formalism can be implemented in an
icon-based SPG for manufacturing simulation.

2, DEVS AND ICON-BASED SPGS

In the Discrete Event System
Specification (DEVS) formalism, simulation
models are understood as hierarchies of
interconnected submodels. DEVS basic
components appear at the bottom level of the
hierarchy and consist of collections of sets
(possible states, input events, output events)
and functions relating the elements of the
sets to each other and to elapsed time. If
two or more basic components are combined by
specifying flows from output ports of some
components to input ports of others, the
resulting model can be understood as another
DEVS component with its own set of states,
input events, output events, and functions.
Any model or basic component can be used as a
submodel in another simulation model.
Concepcion and Schon (1986) developed a
computer aid called SAM that provides
interactive graphics tools for defining and
editing computer representations of DEVS
components and hierarchies.

Zeigler (1986) and Kim (Kim and Zeigler
1987) have implemented the DEVS formalism as
an SPG called DEVS-Scheme in a Lisp-based
artificial intelligence environment. They



wrote it in SCOOPS, the object-oriented
superset of PC-Scheme. Their implementation
does not make use of graphics, but ideas from
Concepcion and Schon's work could be easily
incorporated. IntelliCorp Inc. provides
similar facilities, with graphics, for
hierarchical, modular system specification in
their SimKit software for use within their
Knowledge Engineering Environment (Stelzner et
al. 1987).

The primitive elements offered by
icon-based SPGs are specialized DEVS basic
components. To see this, consider as an
example the Workstation object in the SPG
developed by Ulgen and Thomasma (1987). Table
1 summarizes its functionality by listing the
variables in its data structure and the
functions that are associated with it.
menu provided by Workstation for user
interaction is shown in Figure 1. A
workstation has five possible states:
'working', 'idle', 'blocked', 'broken' and
'toolChange'. Only one external event type is
allowed as input: an attempt to give the
workstation a part to be processed. There is
also only one external output event: an
attempt by the workstation to send a completed
part to another object. State changes are

The

from 'working' to ‘blocked' or 'broken', from
'‘broken' to 'idle', from 'idle' to 'working!
or 'toolChange', from 'blocked' to 'idle' or
'*toolChange', and from 'toolChange' to 'idle!'

or 'blocked'. Output of a finished part
occurs when the state changes from 'blocked!
to 'idle'. Time advance is determined by a
function that is conditional on the state of
the workstation. When a workstation becomes
'broken', the time when it will next be 'idle’
is scheduled. When a tool change begins, the
time when it will end is scheduled. At the
end of the time during which repairs are being
done, the time the next breakdown will occur
is scheduled. When a workstation begins a
processing cycle its completion time is
scheduled. The other object classes (Source,
Sink, Router, StorageFacility, Conveyor) can
be similarly described in terms of their
sequential state sets, input event types,
output event types, state transition
functions, output functions, and time-advance
functions.

According to the theory behind the DEVS

formalism, since objects or icons like the
i described above are DEVS basic

components, they can be interconnected to form
other DEVS components. Therefore, it should
be possible to build icon-based SPGs for
manufacturing simulation that incorporate the
idea from DEVS formalism that models can be
built as collections of interconnected
primitive elements and these collections can
themselves be treated as model elements and
interconnected with other model elements.
These models that consist of collections of
other models are called coupled models or
subsystems, and might be used to model such
things as repair loops in models of transfer
line manufacturing systems. Icon-based SPGs
that can manage subsystems support top-down
and bottom-up approaches to system design and
allow libraries of simulation components to be
easily built, thus encouraging a high degree

255

Machine A
Animation

Gcraan coordinates of icont 404572
Edit icons,
Get the default icons,

Browse the part typas this can accept]

This machine never breaks
HARNING: Once processing starts, it never staps,|
I WARNING: Once machine hreaks, it is never ﬁxed.l
\ 1 parts are needed to begin each processing c'gclu|
ms doesn't produce any bad par_t;l

I Trace is pows OFF!

| Number recewed; § auerage: g per time umt}

| dte, (B)locked, (W)arking, (T)sal change, (D)own]
Times: 1 6,80, W8, T 6, D 0]

Re~
move
copy

send
to

':\o

Prreentsi 1 0%, B 0%, W 0%, 7 0%, D 0%1

Figure 1: Workstation Menu

of model reuse. Support for definition and
use of coupled models enhances the benefits of
icon-based SPGs in decreasing the time
required to build simulations. In the next
section we discuss the facilities we have
built into our SPG to support hierarchical,
modular simulation.

3. SUBSYSTEMS

We have built an icon-based SPG for
manufacturing systems that supports coupled
models, based on an SPG that we wrote earlier
in Smalltalk-80 (Ulgen and Thomasma 1987,
Thomasma and Ulgen 1987). Coupled models are
only used as aids in simulation development in
our system. When the simulation runs without
animation the fact that our primitive elements
(workstations, conveyors, storage facilities,
routers, sources, sinks) are coupled together
to form submodels is ignored. All these
simulation elements correspond to Smalltalk-80
object classes. In order to support coupled
models a new Smalltalk-80 class, called
SubSystem, was written and a subsystem library
manager was added to the Simulator class,
which is the Smalltalk-80 object responsible
for allowing the user to interact with and run
the simulation model. The subsystem library
manager allows the user to add subsystems to
the library, delete them from the library, and



Table 1: Functional Description of HWorkstation

Variables in data structure

Ordered list of parts that are being processed.

Time when the state tast changed.

state
Present state. One of ‘idle", 'working', 'blocked', ‘broken’, or
'toolChange'.

olgState
State that workstation was in before the current tool change
began.

progessingProbability
Probablity distribution used to schedule the time of the next
state change from 'working' to 'blocked".

Probablity distribution used to schedule the time of the next
state change from 'broken’ to 'idle'.

downProbability
Probablity distribution used to schedule the time of the next
state change from 'working' to 'broken’.

cycleToolChanges
List of probability distributions used to schedule times of state
changes from 'toolChange' to 'idle' or 'blocked', indexed by the
number of machine cycles allowed between tool changes.

Functions

model definition functions

£opy
Returns a copy that has copies of the same icon, processing,
repair, down, and tool change probabilities, and reject rate, and
has the same number of parts required to initiate processing
cycle. The copy has a unique identifier, is initialized in state
'idle’ and is not connected to anything. Schedules time of next
breakdown.

copyForArchive

Same as copy, but does not schedule time of next breakdown.

task functions

accept:
Determines whether a part from another object can be accepted
as a workpiece. If one can, state and statistics are changed
accordingly from state 'idle' to ‘working' and completion time is
scheduled.

breakdown
Changes state, display and statistics to correspond to state
change from 'working’ to 'broken' and schedules time when
repairs will be complete.

heck
Determines whether a tool change should begin. [f so, state,
display and statistics are changed accordingly from state 'idle’
or 'blocked' to 'toolChange’ and time when tool change is
complete is scheduled.
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timeTooiChanges
List of probability distributions used to schedule times of state
changes from 'toolChange' to idle' or 'blocked, indexed by the
length of time allowed between tool changes.

List used to keep track of number of machine cycles since the
last of the various kinds of cycle-based tool changes were done.

timeToolChangeCount
List used to keep track of the elapsed time since the last-of the
various kinds of time-based tool changes were done.

rejectRate

Percent of parts produced that will prove to be defective.

|
Number of parts required for the workstation to begin one
processing cycle.

idleTime

Total length of time spent in state ‘idle’.

brokenTime

Total length of time spent in state 'broken’.

Total length of time spent in state ‘working'.

Total length of time spent in state 'blocked’.

Total length of time spent in state 'toolChange'.

done
Changes state, display and statistics to correspond to state
change from ‘working' to 'blocked',

moveit
Determines whether its workpieces can be accepted by other
objects. If they can, state, display and statistics are changed
accordingly from state ‘blocked' to ‘idle'.

Iepaired
Changes state, display and statistics to correspond to state
change from 'broken’ to 'idle' and schedules time of next
breakdown.

looiChanged
Changes state, display and statistics to correspond to state
change from 'toolChange' to 'idle' or 'blocked".

animation functions

fromFile

Reads icon graphics from disk file.

Changes display to indicate acceptance of a part as a workpiece.



instance them into simulation models. The
Simulator class also includes code for
defining new subsystems.

repait loop

A subsystem consists of a collection of i r“f—w
simulation objects which may be interconnected { Animation 13 Sink
to each other according to material flow or inates of icon:
tooach other according to material fl A suesn coordinates of icon: 450@801|
description contains code that allows the user EﬁtkomJ
to.treat a subsystem like any other simulation moye -
object (copy, remove, move, edit icon) and GctﬂmdcﬂthomJ
allows several other specialized operations to Cop
be done (edit subsystem, hide or show dit MQQUMSUMUﬂemkomI
subsystem icon, hide or show detail of Edl . l ,i
elements in subsystem). When detail is hidden sub-| Show detail lﬂtﬂmmyw‘
in a subsystem, only one icon--the subsystem's 5ys- Py
icon--is visibie. Figure 2 shows a subsystem temsru”““
called "Repair Loop" in each one of its 1 ; i
possible visual states: detailed with Iracels now: ON

subsystem icon showing, detailed without

subsystem icon showing, and not detailed.

When the user clicks the mouse on the Figure 3: SubSystem Menu
subsystem's icon, the menu shown in Figure 3

is displayed for interaction.

repalt 100 A subsystem maintains all the same kinds
of information that the other objects
(workstations, conveyors, etc.) do about which
simulation program it runs in, which subsystem
it might be a component of, and how it appears
on the screen. These information types are
defined in the common Smalltalk-80 superclass
i j i ] that all these
objects share. 1In addition a subsystem
maintains an ordered list of the simulation
obijects (workstations, conveyors, storage
facilities, sources, sinks, routers, and other
subsystems) which comprise its components.
The information on how the components are
interconnected is maintained by the components
themselves. Each simulation object maintains
a list of objects that can send materials to
it and a list of objects that it can send
N materials to.

Most of the functions that describe how
a subsystem acts in a simulation program also
describe the behavior of the other objects,
and are coded in class
[ Eanuegor] StationarySimulationObiject. Because of

Smalltalk-80's inheritance feature, many of
these do not need to be rewritten in the
class definition; subsystems make

use of them just as they are. Table 2 lists
detailed without subsystem icon showing all the functions that are unique to the
SubSystem class or required rewriting. Most
of the functions that were rewritten simply
include additional code that applies them to
each of the subsystem’s components as well as
to the subsystem itself, An example of this
is graphicsOff, which erases the object from
the screen and sets a flag indicating that it
should not be drawn while the simulation
program executes. It must be sent to each of
the subsystem's components as well as to the
subsystem itself if it is to be effective. 1In
the same way, copv returns a copy not just of
the subsystem's label and graphics, but also
returns copies of each of the subsystem’s
components in the new copy's component list.
Interconnections between elements in the
subsystem are also reproduced in the copy, as
Figure 2: Visual States for a Subsystem Figure 4 shows.

i

detail hidden
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Table 2: SubSystem's Functions

Functions unique to SubSystem Functions from StationarySimulationQbject that were rewritten

model definition functions interaction functions initialization functions animation functions parameter setting functions
editinteract getSysEditButton initialize display :
include: menu update functions model definition functions graphicsOff interaction functions

updateDetait asgignﬁim!glajg T g[aph icsQn decodeResponse;

animation functions updateShowlc getAnimationTexts

detail manqrAmmm mnaosum getParametersTexts
¢ ngl utility functions Inter place putOnButtons

drawRectangle aliComponents remove showigon setResponges
eraseAliRectangles detailed runBy;
eraseReciangle getRectangle
hideSSlgons iconShowing
noDefail

Repait station

copy of repalr 100

repalr 100

[

dired parts

' il

rt good from bad ‘

Figure 4: A Subsystem and Its Copy

The system will not allow an object to
be deleted or be made a component in a second
subsystem if it is already a component of one
subsystem. If a subsystem is deleted, then it
and all its components will also be deleted.
In order to uncouple single objects from
subsystems or to add new objects, the

function is used. This
function allows the user to click on icons
that are visible. Objects that are in the
subsystem are removed when clicked, and items
that are outside it are included when clicked.
As this is done the status of each object is
maintained by drawing a gray border around
each of the subsystem's components. The
editInteract function calls i

allows the user to edit the subsystem's 1abel

and then places a special copy of it on the
subsystem library if the user desires. This
series of activities is shown in Figure 5.

When copy is executed, information about
the copy is given to the simulator that runs
the original. In this way, a copy is
understood as belonging to the same simulation
program as its original was. For example, if
a copy is made of a source that has an
exponentlal arrival time dlstrlbutlon, then
the copy's next arrival event is placed on the
event chain of the simulator that runs the
original. When editInteract places a copy of
the subsystem that has just been edited onto
the subsystem library a special function

called copyForArchive is used that is exactly
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Figure 5: Sequence of User Activities in Subsystem Editing

like copy but does not give any information
about the copy to any simulation program. The
subsystem archive is a list of subsystems that
are not associated with any simulation
program. This list is stored in a global
variable and is accessible from any simulation
program by clicking on the "Create an instance
of a subsystem from the subsystem library" box
on the Simulator menu (Figure 6). The "Define
Subsystem" button on that menu allows the user
to execute a function that creates a new
subsystem with empty component list and then
applies the gditInteract function to it.

The ability to define and archive
subsystems provides a number of benefits in
constructing simulation models. Often a
factory includes many identical or very
similar configurations of machines and
material handling equipment. Rather than
construct models of each of these from
scratch, it is much faster and potentially
more reliable to construct one of them and
define it as a subsystem, validate it very
carefully, and then make copies of it and, if
necessary, edit the copies slightly. The
resulting subsystems can then be easily
interconnected to form a valid model of the
entire system. The subsystem library makes it
possible to make copies of subsystems for use
in multiple simulation programs. Simulation
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programs can be easily merged using this
mechanism. The ability to hide subsystem
detail and show an animation of the system
using only subsystem icons provides a
mechanism, in addition to zoom and pan,
deealing with limited display size and
resolution. A simulation program could be
animated with only a few subsystem icons on
the screen and only the complete detail of one
critical subsystem visible for careful study.

for

4. SPEED OF SIMULATION EXECUTION

We found it relatively easy to implement
support for coupled models in Smalltalk-80 ’
because of the inheritance, the run-time data
typing and operator overloading available in
that object-oriented language. Similarly,
DEVS-Scheme and SimKit are also implemented in
object-~oriented programming environments
(namely, SCOOPS and KEE, respectively). It is
harder, but still possible, to develop this
kind of SPG without a full object-oriented
language. Brad Cox (1986) has shown that
anything that can be done in an
object-oriented language can be done in an
ordinary procedure-oriented language. Grady
Booch (1986) presents use of object-oriented
concepts as primarily a software design rather
than a programming technique. How hard it
would be to build an SPG like the one
described above in a language that is not
specifically object-oriented depends on the
language. It would be nearly impossible in
primitive forms of BASIC, very dificult in
FORTRAN (which supports functions and global
variables), moderately hard in C or Pascal
(which support abstract variable types and
pointers) and medium easy in newer languages
like Ada and C++ that support constructs like
Ada packages. One thing that makes software
development easier in Smalltalk-80 (or SCOOPS
or KEE) than in any of these other languages
is the fact that the Smalltalk-80 language is
used within an environment that contains very
nice editors, debuggers, browsers, and
built-in code for things like menus, graphics,
and data structures.

Object-oriented or artificial
intelligence-based simulation systems can
decrease the amount of time required to build
simulation models, but this comes at the
expense of efficiency in running the programs
that are built. Our SPG has been implemented
in Smalltalk-80 on a Tektronix 4405
workstation and in Smalltalk/V on an IBM-AT.
We built models of the system whose layout
appears in Figure 7 in both these versions of
Smalltalk and in SIMAN and ran them each for
30 minutes. Table 3 presents the results.
The SIMAN version ran almost three times as
fast as the Smalltalk/V version and slightly

Figure 7: System Modeled for Benchmarks

(12%) faster than the Smalltalk-80 version,
which was run on a more powerful computer than
the IBM-AT. We note that these benchmarks
were run using older versions of Smalltalk
from Tektronix and Digitalk. Both companies
have made available more powerful versions of
their products. Also, our SPG uses a simple
data structure for the event chain when it
runs the simulation programs it produces. Use
of an improved data structure for that could
speed up the Smalltalk versions.

There are many things one could do to
improve the execution speed of simulation
programs written using these object-oriented
SPGs. One is to use faster machines or ones
that have hardware support for languages like
LISP and Smalltalk. Better versions of
Smalltalk are being produced by companies like
?ektron%x, Digitalk and ParcPlace, fueled by
increasing interest in object-oriented
programming among computer scientists.
could build the SPG in one of the newer
compiled languages like C++ or Ada. There is
also a C preprocessor called Objective-C (Cox
1986) which translates object-oriented system
descriptions, coded in language that looks
very much like Smalltalk, into C.

One

Table 3: Amount of Time Simulated in
Thirty Minutes of Execution Time

Computer Processor |Language Time simulated in 30 minute run
IBM AT 80286 SIMAN 36 hours, 41 minutes
IBM AT 80286 Smalltalk/V 12 hours, 33 minutes
" IBM PS/2-80 80386 SIMAN 134 hours, 20 minutes
Tektronix 4405 68020 Smalltalk-80 | 32 hours, 21 minutes
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Another approach is to build a
post-processor for the SPG to automatically
translate the simulation programs it produces
into some well-known, efficient simulation
language, like GPSS, SLAM or SIMAN. In this
way, rather than writing the whole SPG system
in a more efficiently executing language, only
the final, fully validated simulation program
generated by the SPG is translated into a more
efficiently executing language. This is
likely to give the best results in the
immediate future, assuming that a translation
post-processor can be written that runs
efficiently and is as flexible and modifiable
as the SPG itself.

5. SUMMARY

In this paper we have shown how
facilities to support hierarchical, modular
simulation modeling can be incorporated into
an icon-based simulation program generator for
manufacturing. The availability of this
capability facilitates greater reuse of parts
of simulation programs by allowing portions of
models to be easily copied within or between
simulation programs or archived for future
use.

SPGs with the features we described are
easiest to build in object-oriented
programming environments like the Smalltalk-80
system, but if the models they produce are run
in the object-oriented environment, they run
slowly. This problem can be solved if the
additional effort is made to rewrite the SPG
in an ordinary compiled language like C, or a
post-processor is written for the SPG that
will translate simulation programs from
Smalltalk into a simulation language that
provides efficient execution of simulation
programs.
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