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ABSTRACT

Frequency domain simulation experiments
involve inducing sinusoidal variations in the input
process. System sensitivities of the output can be
detected in the frequency domain. The selection of
an approprite index for these oscillations is
critical in running such experiments. The index for
the sinusoidal variations has typically been a
discrete index such as customer or part number in
queﬁeing and production systems respectively. In
this paper, the use of the global simulation clock
as the index is discussed.

1. INTRODUCTION, BACKGROUND, AND MOTIVATION

Frequency Domain Methodology was first
introduced by Schruben and Cogliano [5] as a means
of identifying important factors in discrete event
simulation responses. In recent years, much work
has been done to develop the technique and extend
its area of application (Jacobson, Buss and
Schruben [1], Jacobson and Schruben [2], Morrice
and Schruben [3], Sanchez and Buss [4], Schruben
[6], Schruben, Heath and Buss [7], Som, Sargent and
Schruben [8]).

¥hen frequency domain simulation experiments
are performed, an input process x(t) is varied
about x(0) at driving frequency w with oscillation
amplitude o (i.e. x(t)=x(0)+asin(2rwt)) where w is
in cycles per unit of t. The "time" index, t, may
be the customer arrival number in queueing networks
or job number in production, manufacturing,
computing system and inventory models. In systems
vhere customers or parts retain their identity,
this index is sufficient; in fact, it is ideally
suited to frequency domain experiments. However, if
assemblies or separations occur, it may become
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uncleér which index number to use at different
points during the simulation run. A ‘simple
manufacturing example is the following:

Figure 1
C=A+2B
A > Assembly > ¢cC
BEBB N Operation .

Suppose the assembly station has average
production rate p and the average arrival rates for
parts A and B are XA and XB’ respectively. The
inputs are varied according to

xA(t) = XA(O) + alsin(znult)

XB(t) XB(O) + uasin(znwzt)
p(t) = p(o) + ussin(2n03t)

€))

In the assembly operation one part of type A
is combined with two parts of type B, to form a new
part of type C. There are four part numbers
associated with this operation (one A, two B's, and
one C). Which one should be used as the index in
(1)? The difficulty of selecting an ‘index from part
numbers increases with the complexity of the
manufacturing system which may involve shuffling of
parts [8], multiple assembly operations, and / or
discarding of parts.

It would be desireable to have a common index,
t, for all parameters. An obvious choice is the
global simulation clock. However, its application

is not straightforward.

2. TEE GLOBAL TIME CLOCK INDEX AND FREQUENCY SHIFTS

Consider using the global simulation clock as
the oscillation index, t. In a frequency domain
simulation experiment, the input process x(t) can
be described by x(t)=x(0)+«sin(2nwt). When the
oscillation index, t is customer number or part
number, then x(t) takes on values at t=0,1,2,3,....
This results in an output value, y(t), at



t=0,1,2,3,.... Suppose we use the global simulation
clock T as the unit for t. Suppose further that the
ith customer or part is processed at time T This

results in

x(¢0)=x(0)+«sin(2nu10)=x(0)
x(11)=x(0)+asin(2nu¢1)
x(?2)=x(0)+asin(2nu72)

.

x(?n)=xi0)+asin(2nw1n).

where n is the number of customers or parts
processed during the running of the simulation
experiment. If the expected time between customers
being processed at a particular server or machine
is T time units, then we have w7i=Tu(Ti/T). Since
E(Ti)=iT, then E(ufi)=Tui for i=1,2,...,n. Therefore
using global simulation clock time as the index
results in the frequencies with significant power
spectrum values being rescaled by T, the expected
time between customer or part service in the
gystem. The value for T is typically known to the
simulation user in simple models but may need to be
estimated in more complex models. Since all the
term indicator frequencies get rescaled by some T

value associated with its corresponding server or
machine input, the frequency selection problem
discussed in [1] can be modified by using driving

frequencies wk/T rather then the O given in [1].

3. APPLICATIONS

This section will demonstrate and compare the
effectiveness of the global simulation clock versus
the customer or part number as the unit of index t.
The comparison will be made using two simple
examples.

Table 1i: Comparison of

EXAMPLE 1:

Consider the analysis of an M/M/1 queueing
system using frequency domain methodology. A
simulation model of the M/M/1 queue is run for

=50000 observations. The first 5000 observations
are arbitrarily dropped to reduce the initial
transient effect of the system. The output power
spectrum is estimated with a Tukey lag window of
m=Rd(.9)n=424. The inputs p and ) are varied
according to the formulas p(t)=p(0)+asin(2nu1t) or
x(t)=x(0)+asin(2nu2t) where 1(0)=1 customers unit
per of time and A(0)=.5 customers per unit of time.
The expected time between customers being served is
T=1/> for systems with traffic intensity p=n/p<i.
Table 1 gives the values for 0> Wy & as well as
the term indicator frequency for the linear term in
the model.

Figures 2 and 3 depict the signal-to-noise
ratio output power spectra for the case with
u(0)=1, 2(0)=.5, and @,
the signal-to-noise ratio output power spectra for
the case with p(0)=1, »(0)=.5, w1=.005, and 6,=.02.
The expected time between customers being served is
T=1/2(0)=2. Therefore, the results given in Table 1
and depicted in Figures 2, 3, 4, and 5 demonstrate

=.01. Figures 4 and 5 depict

how the global simulation clock can be used to
drive the input variations during a frequency
domain experiment. In Table 1, the values of T are
estimated from the signal run and results in a
significant output power spectrum value at Tw
and/or Twz.

We should note that when we used the global

1

simulation clock to drive the oscillations for both
inputs X and p simultaneously, we found the system
became more sensitive to oscillations into unstable
regions (i.e. p>1). In fact, the output power
spectra yielded false negatives if the oscillation
amplitudes were chosen too large. This problem is
discussed more fully in [3].

the Customer Number Versus

Global Simulation Clock for an M/M/1 System

(o) 2(0) W 0y o T Linear Term Indicator Frequency
(Time Clock) (Customer Number)
1 .5 .01 V] .8 1.996 .02 .01
1 .8 .01 0 .6 1.248 L0125 .01
1 .5 0 .01 .4 2.053 .02 .01
1 .8 0 .01 7 1.280 .0128 .01
1 .5 .005 .02 .25 2.020 (.01,.04) (.005,.02)
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EXAMPLE 2:

The simple assembly operation given in Figure
1 is simulated for a runsize of n = 50000 where the
first 5000 observations are discarded to reduce
initial transient effects of the system. The
arrival and service distributions are assumed to be
exponential with rates given in (1), where

2, (0) = 0.5, 25(0) = 1.0, p(0) = 1.0,

and o = 0.3, %y = 0.6, wg = 0.6.

The output time series is a record of the
difference between each completion time of the
assembly operation and the corresponding arrival
time of the latest arriving component part. Any
input parameter which influences this output will
also influence the throughput of the system. The
output power spectrum is estimated using Tukey lag
window with m = 200.

Table 2 contains a summary of the simulation
runs. As in example 1, the values for T are
estimated in each signal run. Linear term indicator
frequencies are provided for the global clock time
index and the part number index for part type C.
Note that the linear term indicator frequency for
XB is twice the driving frequency, since two type B
parts are contained in each type C part. Figure 6
is the signal-to-noise ratio when K is varied and
the part number index is used. Figure 7 contains
the signal-to-noise ratio when y is varied and
global clock is used as the index. The results
illustrate that the global clock time can be used
successfully in this setting when one input
parameter is varied during a run.

Yhen more than one input parameter is varied
during a run, the results for the global time clock
index are not as good aé the results for the part
number index. Fiﬁure 8 is a signal-to-—noise ratio
when XA’ XB’ and y are varied together and the part
It is clear that there

is an important linear relationship between each

number in used as the index.

input parameter and the output. When the global
simulation clock is used as the index, the signal-
to-noise ratio indicates that there is a linear
relationship between each input parameter and the
output, however, the results are not as clear as
when the part number index is used (see Figure 9).
4. CONCLUSIONS
¥e have illustrated, using two simple

simulation models, why the global clock is not
necessarily a good index for running frequency
domain experiments. However, this discussion has
provided more insight into the indexing problem
and, with subsequent work, may lead to a more

general indexing scheme.
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Figure 2: Signal-to-noise ratio for an X/M/1 queue using customer number as
the index of oscillation (n =45000, m=424).

Schruben, L.¥., Heath, D., Buss, A.H. (1987).
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Figure 3: Signal-to-noise ratio for an M/M/1 queue using time as the
of oscillation (n=45000, m=424).
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Figure 4: Signgl—to-noise ratio for an N/M/1 queue using customer number as
the index of oscillation (n=45000, m=424).
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Figure 5: Signal-to-noise ratio for an M/M/1 queue using time as the index

of ascillation (n=45000, m=424).
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Figure 7: Signal-to-noise ratio for

index of oscillation (n=45000, m=200).
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Figure 6; Signal-to-noise ratio for an assembly operation using part

number as the index of oscillation (n=45000, m=200). Figure 8: Signal-to-noise ratio for an assembly operation using part

number as ‘the index of oscillation (n=45000, m=200).
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Figure 9: Signal-to-noise ratio for an assembly operation using time as the
index of oscillation (n=45000, w=200).
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