Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

On modeling Local Area Networks

Louis Y. Tsui
Department of Industrial and
Systems Engineering
The University of Michigan-Dearborn
Dearborn, MI 48128-1491

ABSTRACT

The study of network throughput and
utilization requires the modeling of
packets being transmitted along the media.
Modeling such a system can be guite
logically demanding, especially that
packets can move along the media in
opposite directions at almost the speed of
light; and when collisions are allowed, a
packet may collide with another that is
beyond its control.

‘Iwo modeling approaches are presented
in this paper. One results in programs
that closely follow the behavior of the
physical system, yet require significant
CPU time to execute. The second approach
results in programs that may seem to be
‘unnatural', yet more time-efficient.

Examples on token-ring and CSMA/CD
networks are given in pseudo codes,
followed by comparison of run times.

1. INTRODUGTION

In the past decade, local area
networks (LANs) have grown increasingly
popular. As more expensive equipment and
more complex systems are being considered,
the demand for tools to evaluate network
performance also rises.

When developing complex models, a good
portion of the analyst's time will be spent
on understanding the rules as how the
system behaves. As a result, the models
that first come to mind usually have a
clear correspondence to the physical
system. However, such models may require
detailed information on an object-by-object
basis; thus, require large amount of CPU
time to obtain the results.

In their paper, Henriksen and Schriber
present two simplified approaches on
modeling conveyor systems [2]. In many
aspects, modeling packets moving along a
cable is similar to modeling objects moving
along a convevor. However, modeling of
packets appear to be more challenging
because packets may move in both directions
along a cable, while the movement of
objects along a conveyor is unidirectional.
Also, the objects can be put on the
conveyor once an adeguate space is found,
and they will reach their destination
successfully (assuming the objects do not
fall off the conveyor). In contrast,

842

Onur M. Ulgen
Department of Industrial and
Systems Engineering
The University of Michigan-Dearborn
Dearborn, MI 48128-1491

packets can get on a cable anywhere but
later they may collide with other packets
and cause transmission to be aborted; thus,
the "adequate space" for the packets does
not exist any more.

Another issue that makes the modeling
of networks challenging is that two
different time scales must be dealt with.
The packet interarrival time is in
magnitude of seconds or minutes, e.g. the
frequency that the user hits the return
key. The packet propagation time is in
magnitude of micro-seconds (at the speed of
light or 186,000 miles/sec). Unless one
assumes that the propagation time is zero,
the program may be very time-consuming.

Two approaches are presented in this
paper. The first approach is straight-
forward. It appears to be the simpler
approach but, generally, it is also the
inefficient one. The second approach is
the more efficient approach but reqguires
more insight to the process and a little
more programming effort. Two network
topologies are considered here. Models of
a token-ring network and a CSMA/CD network
are built for illustration. Section 2 of
the paper briefly describes the token-ring
protocol. Section 3 gives a straight-
forward approach to modeling token-ring
LANs. Section 4 gives the more efficient
approach to modeling the token-ring LANs.
Section 5 gives the brief description of
the CSMA/CD protocol. Section 6 discusses
some of the difficult modeling issues
associated with CSMA/CD protocol. Section
7 gives a straightforward approach to
modeling the CSMA/CD LANs. Section 8 gives
the more efficient approach to modeling the
CSMA/CD LANs. The comparison of results
and conclusions are given in Section 9.

2. THE TOKEN-RING PROTOCOQL

The IEEE formed the 802 Committee in
order to define the LAN standards. The
802.5 standard defines the token-ring
protocol, which utilizes ring topology and
token passing as access method [1]. In a
token-ring LAN such as the one IBM
announced in 1985. all nodes are connected
to form a ring (see Fig. 1). Examples of a
node can be a personal computer, a printer,
or a file server. Each node is connected
to the ring via two cables; one on which it
receives data from its upstream neighbor
and another one on which it sends data to
its downstream neighbor. A special data

packet called token circulates around the
network. Only one token exists on the
network at any one time and only the node
owning the token is granted the right to
send data to other nodes of the network. A
token-holding time is set to prevent any
node hogging the network. When the node is
done sending the data or the token-holding
time has run out, the token owner passes
the token to its downstream neighbor so
that the other nodes can transmit.

Fig. 1 An Example Token-Ring LAN

In a LAN, the performance measures
include variables such as network
throughput, network utilization, and
response time. In a token-ring LAN, the
node must receive and capture the token
before the data can be transmitted. If
node A is ready to transmit before node B
is readyv, but node B receives the token
first, node B gets to transmit the data
first even though its request to transmit
comes after that of node A. Therefore, if
the token itself is not modeled and the
ring is modeled as a server with the FIFO
queue discipline, the response time of each
node can not be measured correctly.

-

APPROACH

A straightforward approach to modeling
the token-ring LAN would be to model the
token circulating about the ring, from one
node to the next (thus the "node-by-node"
approach). If a node is ready to transmit
when the token arrives, the node will keep
the token and start to transmit until it is
done or the token-holding time has run out.
The node will then put the token back onto
the ring so that the other nodes can
transmit.

Figure 2 gives a Pascal-like pseudo-
code model of a ring with three nodes. The
pseudo code can be easily translated into
languages such as GPSS, SLAM or SIMAN.
Segment Token;

Procedure TransmitFrom (Queue):

/*® this procedure sends data from Queue
until it is done or the token-holding
time has run out

*/

Begin

Capture the token;
Get data from Queue to form packets;

843

Wait until the packets are transmitted
or the token-holding time runs out;
Update Queue status;
Release the token;
End;
/* The following sections simulate the
arrival of data to the nodes to be
transmitted, One procedure for each
node, and they may execute
concurrently
*/
Procedure Nodel;
Begin
Generate data to Queuel according to
its interarrival time;
Assign length attribute;
End;

Procedure NodeB;
Begin
Generate data to Queue2 according to
its interarrival time;
Assign length attribute;
End;

Procedure NodeC;
Begin
Generate data to Queue3 according to
its interarrival time;
Assign length attribute;
End;
/*

Begin The following simulates the

token movement */
Generate a token:

Nodel:
If Queuel is not empty
Then TransmitFrom{Queuel);
Wait until token arrives Node 2:

Node2:
If Queue2 is not empty
Then TransmitFrom(Queue2);
Wait until token arrives Node 3:

Node3:
If Queueld is not emptv
Then TransmitFrom(Queue3):
Wait until token arrives.Node 1;

Goto Nodel
End.
Fig. 2 A Node-by-Node Model of a
Token-—-Ring LAN

The above model is easy to understand
and simple to come up with but, as
described below, it is very slow to run,
especially when the workload on the network
is low. Depending on the material of the
cable, the signal can travel from 600 feet
to 1000 feet per micro second. Given that
the local area network resides in an office
building or on a plant floor, it may take
only a fraction of a micro-second for the
token to go from one node to the next. If
the packets are generated at an aggregate
rate of one packet per second, and the
travel time from node to node is one micro-

second, more than 99% of the clock update
process will be used to keep track of the
position of the token. Therefore, such a
model can be guite undesirable.

4. NEXT-MAJOR-EVENT APPROACH

Since the location of the token does
not contribute to any statistics of
interest. especially when the network is
idle, a second look at the above model
suggests the following approach. In this
approach, the circulation of the token is
not simulated when the network is idle.
Instead, the model logic figures out the
location of the token only when a node
becomes ready to transmit. Therefore, the
time is only spent on major events that
are of direct interest to the analvsis
{thus the "Next-Major-Event" approach).
The approach requires the identification of
the major events and updates the model at
these event times only. After the event
that the network becomes idle, it is likely
that the next sequence of events will be
the token arriving at each node with no
data to transmit. followed by the event
that a node becomes ready to transmit the
data. The efficiency of the model can be
improved significantly if the simulation
can go from idle state to ready state
directly, all that is required is being
able to figure out the location of the
token when a node bescomes ready to
transmit. Hence, in the following model,
the variable Count is used to indicate the
number of stations ready to transmit. It
is set to zero initially. When Count
becomes zero, the network becomes idle.
Instead of continuing to move the token
around, the model records the time and
location where the token is currentlv at
and put the token aside. The next major
event is when a node becomes ready to
transmit, Count becomes 1 which indicates
that the token must be put back onto the
ring. The location can be computed from
the elapsed time, the last location of the
token and the travel time of a bit around
an idle ring (walk time). When Count is
non~zero, the token is either held by a
node or in the transition from one node to
the next, the node simply has to wait for
the token to arrive before it can start
transmission. By this approach, the need
to update the location of the token when
the network is idle is eliminated, the
savings in CPU time should be obvious.
Figure 3 gives the three-node ring modeled
in pseudo-code using the next-major-event
approach.

Segment Token;

/* Global variables
Name Range Definition
Count 0..3 the number of

nodes ready
to transmit, set
to 0 initially.

844

the node number
where the token
was at when the
network became
idle.

the last time the
network became
idle.

Node

Time real

*/

Procedure TransmitFrom(Queue. Node#):;

/* This procedure sends data from Queue
at Node# until it is done or the
token-holding time has run out
*/
Begin
Capture the token;
Get data from Queue to form packets;
Wait until the packets are transmitted
or the token-~holding time runs out;
Update Queue status;
If Queve becomes empty Then
Count := Count - 1:
If Count = O Then
Begin
Node := Node#;
Time := TimeNow;
Remove the token from the
network;
End
Else Release the token;

End;
/%

*/
Procedure Nodel;
Begin
Generate data to Queuel according to
its interarrival time;
If Quevel was empty Then
Count := Count + 1:
If Count = 1 Then
Begin
Calculate where the token is;
Calculate the travel time t that
the token will reach the next
node, say NodeX;
Wait for t time units;
Generate a token at NodeX:
End:;

The following procedures, NodelA, NodeB
and NodeC run concurrently

End;

Procedure NodeB;
Begin
Generate data to Queue2 according to
its interarrival time;
If Queue2 was empty Then

Count := Count + 1;
If Count = 1 Then
Begin .

Calculate where the token is:

Calculate the travel time t that
the token will reach the next
node, say NodeX;

Wait for t time units;

Generate a token at NodeX;

End;
End;

Procedure NodeC;
Begin
Generate data to Queue2 according to
its interarrival time;
I1f Queue3 was empty Then

Count := Count + 1;
If Count = 1 Then
Begin

Calculate where the token is;

Calculate the travel time t that
the token will reach the next
node, say NodeX;

Wait for t time units:

Generate a token at NodeX;

End;
Endg;

Begin /* the token movement */

Generate a token:

Nodel:
If Queuel is not empty Then
TransmitFrom{Queuel, 1)
Wait until token arrives Node 2;

Node2:
If Queue2 is not empty Then
TransmitFrom(Queue2, 2};
Wait until token arrives Node 3;

Node3d:
If Queue3d is not empty Then
TransmitFrom(Queueld, 3):
Wait until token arrives Node 1;

Goto Nodel
End.
Fig. 3 A Next-Major-Event Model of a
Three-~Node Token-Ring LAN

5. THE GOSMA/CD PROTOCOL

The CSMA/CD protocol is the IEEE 802.3
standard, which is the standardized version
of Ethernet, developed by Xerox
Corporation, utilizing bus topology and the
Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) access
method. This access method mimics the way
a roomful of people talk to each other.
There is no central control, any person who
wishes to talk will listen first, and if
someone else is talking, he/she would defer
until that person is done. If more than
one person start to talk simultaneously,
they stop when they hear the voice of
others and wait for a while before they try
again. The roomful of people are the
nodes, each node can communicate with
others by sending packets through the bus,
usually a coaxial cable. Before a node
starts to transmit packets (talk), it must
test if the carrier on the bus is active
{listen to see whether someone else is
talking). If the carrier is active, the
node will wait until the carrier becomes
inactive, then, after a short period
(interframe spacing time), the node will
start transmitting the packets. During the
transmission period, the node listens to
see if another node is also transmitting,

845

i.e. collision detection. If it detects
signals transmitted from other nodes, it
realizes a collision has happened. Since
the packet it sent becomes garbled. it will
not send the remaining part of the packet.
Instead, it enforces the collision by
sending a jamming signal to notify all the
other nodes that a collision has occurred.
then stops transmission and backs off for a
random amount of time (backoff time). When
the backoff time expires, the node starts
carrier sense and tries to send the packet
again. If collisions happen again and
again on the same packet. the node will
discard the packet after a certain number
of retries and reports it as an
unsuccessful event [4]1. Figure 4 gives an
example of the CSMA/CD LAN.

2
lerminatar Teanscaver

Micro

6. MODELING ISSUES

The behavior of CSMA/CD network is
much more complex than the token-ring
network. In the most simplistic case, the
bus can be treated as a server with FIFO
gueve discipline. Unfortunately. this
approach completely eliminates the issues
of collision and retransmission. In fact,
part of the network traffic is caused by
the retransmission of previously collided
packets. As the workload of the network
increases, so will the collision and
retransmission rate. Therefore, the above
approach will produce an incorrect
throughput of the LAN when the workload is
high.

Since most people are interested in
the response time and the throughput of the
LAN when it is heavily loaded, the bus can
not be adegquately modeled as a server. In
reality, the bus appears available to some
nodes and unavailable to others, depending
upon the location of the transmitting node
and the node requesting to transmit. If
the carrier is sensed by the node ready to
transmit. the bus is unavailable and the
node defers. Otherwise, the node assumes
the bus is available and starts
transmission. It is only when the first
bit of a packet reaches both ends of the
bus will the carrier be sensed active by
2ll the nodes. Therefore, only if no other
nodes participated before the packet
reaches both ends (call this time duration
the contention period), can the
transmission be guaranteed suvccessful.
Otherwise. collision will occur and will be
detected when the transmitting node
receives the packet from some other node.
Since the contention period varies

according to thé position of the
transmitting node, and collisions are
caused by other nodes that are beyond the
control of the transmitting node, modeling
collision detection can be difficult.

7. SECTION-BY-SECTION APPROACH

Because the packets go in both
directions and the nodes are not
necessarily equally spaced, the node-by-
node approach must be modified to a
section-by-section approach in the bus
topology LAN, where the bus is divided into
sections of equal length and each section
is attached to by at most one node. Each
section becomes busy (carrier becomes
active) as the packet propagates from the
previous section. Nodes attached to the
busy sections will sense the carrier and
defer the sending of packets while nodes in
the not-busy sections will transmit. If a
packet enters a section that is already
busy, collision will be detected by the
node attached to that section. Thus; the
node will stop transmission and backs off
after sending the jamming signals.

Figure 5§ describes the logic of the
section-by-section approach where the bus
is divided into N equal sized sections.

The rightmost section is numbered 1 and the
leftmost numbered N. Each node has one
procedure and all node procedures run
concurrently.

/* Global Variables

the number of
sections in the bus

bus{i]=0 if carrier
can not be sensed in
section i;

bus[i]>0 if carrier
can be sensed in
section i;

bus(il>1 if

collision can be
detected in section i
>= 0 the number of nodes
transmitting during
the contention period

Count

*)

Procedure BusBecomesBusy (Var K: integer;
Ownsection: 1..N;
Tmax: 1:N);

/* As the leading edges of the packet
propagate along the bus, this
procedure updates the status of each
section. The procedure returns when
collision is detected or the leading
edges reach both ends of the bus. If
collision is detected, K gives the
number of sections the leading edges
have propagated.

846

VAR

left, right: 0..N+1; /* array index */

Begin

bus[Ownsection] := 1;

count := count + 1; /* on the air */
left := OwnSection;
right := left;
K := 0;
While (X < Tmax) and

{bus{Ownsection] = 1) Do

Begin
K =X + 1;

Wait one time unit;
left := Max (left - 1, 0);
right := Min (right+1, N+1);
busl[left] = buslleft] + 1;;
bus[right] = bus[right] + 1;
End
End;

Procedure BusBecomesIdle (Ownsection:1..N);
/* This procedure updates the status of
each section as the trailing edges of
the packet propagate along the bus.
*/
VAR
i: O..N+1; /%

array index ¥/

Begin

idle;
/¥

bus[Ownsection] :=
count := count - 1;
left := OwnSection;
right := left;

off air */

For i := 1 to Tmax do
Begin
wait one time unit;
left := Max {left - 1, 0);
right := Min (right+1, N+1);
bus[left] = busfleft] - 1;;
bus[right] = bus[right] - 1;
End
End;

Procedure ANode;
/* Liocal Variable

Range Definition

Ownsection 1..N the bus section
number this node

is attached to.

i 0..N+1 array index
Tmax 0..N the number of
sections to the
farther end of the
bus
Tmin 0..N the number of

sections to the
closer end of the
bus

*/

Begin /* the main segment */

/* initialization */
Let Tmax and Tmin be the distance to the
farther and the closer end of the bus
in number of sections, respectively.

Wait until a packet is generated by an
application;
While the transmit buffer is not empty Do
Begin
/* carrier sense */
Wait until bus{OwnSection] <> busy;

/* start transmission */
BusBecomesBusy (K, Ownsection, Tmax);

/* signals have propagated to both
ends of the bus */
If (K < Tmax) Then
Begin /* collision detected */
/* send the jamming signal while
the leading edges of the
original signal keep

propagating
*/
While (K < Tmax) Do
Begin
left := OwnSection + K;
right := OwnSection - K;
K :=K + 1;

Wait one time unit;
left := Max (left - 1, 0);
right := Min (right+1,N+1);

bus[left] := busl[left] + 1;;
bus[right] := bus(right] + 1;
End;

Wait until the remaining jamming
signal is sent;
BusBecomesIdle (Ownsection);
Wait until backoff time expires;
End
Else /* Collision not sensed yet */
If (count = 1)} Then
Begin /* The packet can be
transmitted successfully
*/
Wait until the remaining packet
is transmitted;
BusBecomesIdle (Ownsection);
End .

Else /* some node sent a packet,
which has not reached this
section yet

*/

Begin
/*¥ wait until it gets here */
Wait until Bus[OwnSection] > 1 ;

/¥ Send the jamming signal */

Wait until the complete jamming
signal is sent;

BusBecomesIdle (Ownsection);

Wait until the back off time
expires;

End
End
End.

Fig. 5 The Section-by-Section Model of A
CSMA/CD LAN

The above approach resembles very much
the inch-by-inch approach to simulating the
progress of cartons down the conveyor [3].
Although there won't be as many packets on
the cable as there are cartons on the
conveyor, it is still time-inefficient.
Since the signal can travel from 600 feet
to 1000 feet per micro second, we can
readily see that the time unit may well be
a fraction of a micro second, and it
requires at least one hundred time units
for the packet to go from one end to the
other in a network with one hundred nodes.

The section-by-section approach
allows the model to detect the collision
when the node detects it. However, little
value is gained for most of the time when
the packet moves form one section to the
next. Therefore, if the model can identify
and move directly to the next major event
where appropriate actions are taken, the
efficiency can be improved significantly.

8. NEXT-MAJOR-EVENT-APPROACH

After a node starts to transmit, if
the next major event is defined at the
instance when the packet reaches both ends
of the bus, one can examine the number of
nodes which started transmitting during
this period and determine whether collision
has taken place or will take place. If
only one node is transmitting during this
period, the transmission is a successful
one; otherwise, collision is detected. The
collision can always be scheduled later in
time if it has not happened yet; however,
if the collision should have been detected
earlier, is it too late to react?

In order to answer the guestion, a
closer look at the LAN must be taken. One
requirement on the local area networks is
that the propagation delay should be much
less than the transmission delay. Since
the jamming signal is relatively long (32
bits), even if the node detects the
collision right after it started
transmission, it would not be done sending
the jamming signal when the original packet
reaches both ends of the cable. Therefore,
it is not too late to stop the transmission
of jamming signal in time and produce the
correct network utilization.

Since there is no need to trace the
individual packet, there is no need to
model the bus in this approach. Instead, a
counter is used to tally the number of
transmitting nodes. When a node starts to
transmit, its node ID and start time are
recorded in a data structure, and the
counter is incremented by one. When a node
stops transmitting, its node ID and stop
time are recorded in another data
structure, and the counter is decremented
by one. Collision is indicated when the
counter becomes greater than one. The time
collision is detected by each node can be
figured out from the distance between the
nodes and the difference between the
transmission start times. The carrier

sehse can be handled in a similar fashion.
The utilization can also be calculated
according to the transmission start time
and stop time. Figure 6 gives a detailed
model of this approach.

/* Global Variables
Definition

the number of nodes

active if all nodes
on the network can
sense the carrier,
inactive otherwise.

Carrier [(active,
inactive)

XmitID[1..N] 1..N the transmitting

node ID
XmitTime[1..N] >0 the time
transmission
started

the number of
transmitting nodes

XmitCount 1..N

StopID[1..N] 1..N the node ID

the time when the
node stops

StopTime{l..N]1 >0

transmitting
StopCount 1..N the number of

entries in

StopID (StopTime)
*/

Segment ANode;

/* Local Variables

Name Range Definition
ownID 1..N The node ID
CarrierSensed (true, true if this

false) node can
sense the
carrier
*/
Procedure SendJammingSignal (Var count:
1,.N};
/* Local Variables
Name Range Definition
count 1..N the total number
of nodes involved
in a collision
i, J i1..N loop index
T real time collision is
detected
Min real the earliest time

collision is
detected by 2 node

the time collision
is detected by all
nodes

Max real

Tjam real the time required
to transmit the
jamming signal
*/
Begin

/* £find out when the last node

detects the collision
*/

max := -1;
For i := 1 to count Do
/* the transmitting node */
Begin
Min := maxint;
For j := 1 to count Do
/* all other nodes */
Begin
istance := the distance
between ImitID[{i] and
XmitID[j];
/* calculate the time
collision is being realized
*/
T := XnitTimel[j] +
distance/propagation_speed;
If Min > T Then Min := T; /*
time collision detected
by the ith node */
End;
If Max < Min then Max := Min:;
End

/* Max is the time the last node
detects collision */
Wait for Tjam+(Max-TimeNow) time units

/* all nodes are done with sending the
jamming signal */
count := 0;
carrier := inactive;
End;

Begin /* Main Program */
Wait until a packet is generated by an
application;
While the transmit buffer is not empty Do
Begin

/*¥ carrier sense */
Ready:
If (carrier = active) Then /* defer */
Wait until carrier = inactive

/* wait until the trailing edge of the
last packet pass the node
*/
t = -1;
For i := 1 to StepCount Do
Begin
temp := (distance to StopID[il) /
propagation_speed + StopTime[i];
If temp > t Then t := temp;
End:

848

If temp > TimeNow Then
Wait for (temp -~ TimeNow) time units
Else If (XmitCount > 0) Then
/* in the contention period,
if carrier can be sensed
*/

Begin
i:=1;
CarrierSensed := false;
While (Not CarrierSensed) and
(i<=¥mitCount) Do
Begin
distance := the distance to
Xmit[i1].nodeID;
If TimeNow-XmitTime[i] >=
distance/propagation_speed
Then CarrierSensed:=True;
i:=1+1;
End
If CarrierSensed Then
Goto Ready

see

End
/% start transmitting the packet */

XmitCount := XmitCount + 1;
XmitID[XmitCount] := ownlD;
Xmit[Xmitcount].Starttime := TimeNow:
Wait until signal reaches both ends;

/* collision detection */

If XmitCount = 1 Then
/* at this point, all nodes will sense
the carrier and thus defer. No
collision past this point is possible

’l:/

Begin
carrier := active;
XmitCount := 0;
Wait until transmission is completed;
carrier := inactive:
StopCount := 1;
StopID[1] := OwnID;
StopTime[1] := TimeNow;

End

Else /¥ more than one node is
transmitting */

Begin

carrier := active;

SendJammingSignal(count);
Calculate (BackOffTime);
Wait until BackOffTime expires;
Goto Ready;
End
END.

Fig 6. The-Next-Major Event Model of A
CSMA/CD LAN

9. CONCLUSION

Two models for the token-ring LAN are
programed in GPSS/H using the two different
approaches, The ring cpnsists of four
nodes, each one is one (1} microsecond
apart, every time the token is captured,
is held for one {1) millisecond, the
requests to transmit are varied to achieve
different network utilization. The
programs are run for five (5) simulated
seconds on Micro VAX II, the execution time
of the node-~by-node approach is more than

it

849

two hundred times higher than that of the
next-major-event approach when the network
utilization is about 20% (1336.11 vs. 4.74
CPU seconds). At 43% utilization, the
ratio is about ninety-~seven (962.31 vs.
9.86 CPU seconds). At 63.5% utilization,
the ratio is about thirty-nine times
(577.57 vs. 14.39 CPU seconds). At 80%
utilization, the ratio dropped to about
seventeen times {(307.9 vs. 17.74 CPU
seconds). Finally, the ratio approaches to
one as the network utilization approaches
to 99%. The superiority of the next-
major-event approach is clearly

demonstrated.

REFERENCES

1. Token Ring Access Method and Physical
Layer Specifications, IEEE Std 802.5-
1985, The Institute of Electrical and
Electronics Engineering, Inc, 1985.

2. James O. Henriksen and T. J. Schriber,

"Simplified Approaches to Modeling
Accumulating and Nonaccumulating
Conveyor Systems," Proceedings of the
1986 Winter Simulation Conference.

3. James 0. Henriksen, "You Can't Beat
the Clock," Proceedings of the 1986
Winter Simulation Conference.

4. Dick Lefkon,
July 1987.

"A LAN Primer," BYTE,

AUTHOR'S BIOGRAPHIES
Louis Tsui is an Assistant Professor
of Industrial and Systems Engineering at
the University of Michigan-Dearborn. He
received his B.S. in Computer Science in
1974 at the Tankiang University., Taipei.
Taiwan, and M.S. and Ph.D. in Industrial
and Operatlions Engineering at the
University of Michigan, Ann Arbor, in 1977
and 1984, respectively. Dr. Tsui has been
working on production scheduling,
manufacturing process simulation, and
computer network performance evaluation.
His present research interests include
decision support systems and software
development. He is a member of TIMS/ORSA.

Onur M. Ulgen is an Associate
Professor of Industrial and Systems
Engineering at the University of Michigan-
Dearborn. He received his B.S. in
Mechanical Engineering in 1972 at the
Bosphorus Universityv. Istanbul, Turkey, and
M.8. and Ph.D. in Industrial Engineering at
the Texas Tech University, Lubbock, Texas,
ih 1975 and 1979, respectively. Dr. Ulgen
has been an active consultant for a number
of vears in the application of simulation
in manufacturing systems. His present
research interests include computer
simulation program generators, object-
oriented programming, animation, and
scheduling theory as applied to
manufacturing systems. He is a member of
TIMS/ORSA, IIE, SCS, and IEEE-SMC.

