Continuous System Simulation Languages (CSSL's)

Dr. Ralph C. Huntsinger
Computer Science and Mechanical Engineering Departments
California State University, Chico
Chico, California 95929

```
This tutorial introduces CSSL's (Continuous System
                                                              Rocket Dynamics (CSSL-IV)
Simulation Languages) by using examples from three of
                                                              PROGRAM ROCKET
the popular commercial languages used in North America
                                                              INITIAL
at the present time. The languages are CSSL-IV (1), DSL/VS (2) and ISIM (3).
                                                                CONSTANT K=0.008,G=32.17, ...
                                                                TOFF=60.0, TFIN=100.0yØ=0.0,...
Continuous System Simulation Languages are
                                                                DYØ=0.0, THRUST=7000.0
                                                              END $"OF INITIAL SECTION"
user-oriented software systems. CSSL's are designed
to assist engineers and scientists to mathematically
                                                              DYNAMI C
model, analyze, and evaluate the dynamic behavior of
                                                                 CINTERVAL CINT=1.0
physical phenomena. By providing a set of tools for
                                                              DRIVATIVE ROCK
computer-aided-analysis, they make it easy for the
                                                                ALGORITHM IALGO=5, ALGO=5
user to get his simulation on the computer quickly
                                                                SWITCH=TOFF-T
and to easily conduct experiments, collect data and
                                                                W=SWIN(SWITCH, 3000.0-400*TOFF, 3000.0-40.0*T)
present that data in useful form with minimal know-
                                                                THRUST=SWIN(SWITCH, 0.0, THRUST)
ledge of the computer system itself.
                                                                DRAG=K*DY*ABS(DY)
CSSL's are easily learned and applied to many types
                                                                D2Y=G*(THRUST-DRAG)/W-G
of problems in all sciences and engineering
                                                                DY=INTEG(D2Y,DYØ)
disciplines. The problems can usually be coded in a
                                                                 Y=INTEG(DY,YØ)
short time, executed immediately and evaluated quick-
                                                              END $ "OF DERIVATIVE SECTION"
ly by inspection of graphic output in several forms.
                                                                 TERMT(T .GE. TFIN)
This rapid iteration capability is useful in model
                                                                 PREPAR Y, DY, D2Y, W, THRUST
development and design efforts.
                                                               END $ "OF DYNAMIC"
The example
                 concerns the flight of a small single-
                                                              TERMINAL
stage rocket which is fired vertically. The weight
of the rocket, when empty of fuel, is 600 lbs, and
                                                              END $ "OF PROGRAM IN CSSL-IV"
initially it contains 2400 lbs of fuel giving a total
                                                              Last is the code for the rocket problem written in
launch weight of 3000 lbs. The rocket produces a
                                                              IBM's DSL/VS language.
constant thrust (THRUST) of 7000 lbs and burns fuel
                                                             TITLE ROCKET PROBLEM
at a constant rate of 40 lbs per second. The drag
                                                                DSL/AEROSPACE EXAMPLE
force (DRAG) is proportional to the square of the
rocket velocity. During fuel burn the system
                                                             CONST G=32.17, TH=7000.0, WMIN=600.0
equation is:
                                                             INCON Y0=0.0, DY0=0.0
     Y^{-} = G*(THRUST-DRAG)/W-G
                                                             PARAM K=0.008
where W = 3000-40*T
                                                                    CALL SCLOCK(60.0)
is the weight of the rocket and fuel at time T
DRAG = K*Y'*|Y'| (to ensure drag always opposes
                                                             DERIVATIVE
                                                                   W = 3000.0 - 40.0 
                        motion)
                                                                   WT= FCNSW( 60.0-TIME , WMIN , WMIN , W )
       K = 0.008
                                                                   D2Y=G*TH/WT-G-K*DY*ABS(DY)*G/WT
       G = 32.17 \text{ ft/sec/sec}
                                                             NOSORT
       Y = elevation from launch pad
                                                                   IF(TIME .GE. 60.0) TH=0.0
Initial conditions are Y=0 and Y'=0 at T=0
                                                             SORT
The above equations apply until fuel is exhausted at
                                                                   DY=INTGRL(DYO,D2Y)
T=60 seconds, at which point THRUST becomes zero and W becomes constant at 600 lbs. A solution for Y
                                                                   Y=INTGRL(YO,DY)
                                                             TERMI NAL
against T is required up to T=100 seconds.
                                                             PREPAR Y, DY, D2Y
:ISIM ROCKET PROGRAM
                                                             CONTROL FINTIM=100.0, DELT=0.02, DELPLT=0.04
CONSTANT K=0.008, G=32.17
                                                             RANGE Y, DY, D2Y, WT
CONSTANT ALGO=1: 4TH-ORDER FIXED STEP
                                                             GRAPH (DE=TEK618) TIME,Y,
CONSTANT TOFF=60, TFIN=100, CINT=1
                                                             GRAPH (DE=TEK618) TIME, Y, DY
INITIAL
                                                             GRAPH (DE=TEK618) TIME, DY, D2Y
 Y=0;Y'=0
                                                             PRINT 5.0, Y, DY, D2Y
  THRUST=7000
                                                             END
DYNAMIC
                                                             STOP
  W=3000-40*T
                                                             References:
  IF (T.LE.TOFF)GOTO 1
                                                             (1) CSSL-IV Users Guide and Reference Manual, Simula-
  THRUST=0; W=3000-40*TOFF
                                                                  tion Services, Chatsworth, CA (213) 998-7824
1 DRAC=K*Y *ABS(=Y)
                                                             (2) Dynamic Simulation Language/VS Language Reference
  Y ~=G*(THRUST-DRAG)/W-G
                                                                 Manual (SH20-6288-0), IBM Corporation, GPD, San
 PLOT T,Y,O,TFIN,O,50000
PREPARE T,Y,Y',W,THRUST
                                                                  Jose, CA (408) 256-4254
                                                             (3) Interactive Simulation Language User Manual
The CSSL IV code for the same problem is as follows:
                                                                 Crosbie, Hay & Associates, Chico, CA 95927 894-8255
```