Proceedings of the 1989 Winter Simuiation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

PERSPECTIVES ON SIMULATION USING GPSS

Thomas J. Schriber
Graduate School of Business Administration
The University of Michigan
Ann Arbor MI 48109-1234 USA

ABSTRACT

A broad overview of the simulation modeling language GPSS is
given. The class of problems to which GPSS applies especially well
is described, and. commentary on the semantics and syntax of the
language is offered. Various GPSS implementations are indicated,
and vendor information is given. The GPSS learning-oriented
literature is reviewed, and sources comparing GPSS and other
simulation languages are cited. Professional GPSS courses are
listed. A GPSS model and its output are presented and discussed in
an appendix.

The GPSS tutorial at the 1989 Winter Simulation Conference
will show how one goes about building GPSS models. Paper copies
of the tutorial transparencies will be given out at the tutorial.

1. GPSS IN BRIEF

GPSS (General Purpose Simulation System) is a popular
(Christy and Watson, 1983) simulation modeling language whose
use greatly eases the task of building computer models for certain
types of discrete-event simulations. (A discrete-event simulation is
one in which the state of the system being simulated changes at only
a discrete, but possibly random, set of time points, called event
times.) GPSS lends itself especially well to modeling systems in
which discrete units of traffic compete for scarce resources (e.g.,
queuing systems), and is useful in determining how well such sys-
tems will respond to the demands placed on them. GPSS has been
applied, for example, to the modeling of manufacturing systems,
communication systems, computing systems, transportation systems,
inventory systems, and health-care systems, and has been used in
chemical engineering, mining engineering, and cancer research.

2. THE SEMANTICS AND SYNTAX OF GPSS

GPSS offers a rich set of semantics, and yet is sparse in its syn-
tax. For example, only seven statements (plus several run-control
statements) are required to model a one-line, one-server queuing
system in GPSS. These statements take such simple forms as
"GENERATE 18,6" and "QUEUE LINE". No read, write, format,
or test statements appear in the model. And yet, when a simulation is
performed with the model, fixed-form, fixed-content output is pro-
duced, providing statistics for the server (€.g., number of times cap-
tured; average holding time per capture; fraction of time in use) and
the waiting line (e.g., average content; Maximum content; average
time in line), etc. This limited example is roughly suggestive of the
character of GPSS. A GPSS model for the one-line, one-server
system is given here in an appendix.

The sparse syntax of GPSS, coupled with its block-diagram
orientation, makes it possible for the beginner to learn quickly a

115

usable subset of the language. Because GPSS is rich and versatile,
however, considerable study is required to master the complete lan-
guage.

The GPSS world view (stylized way of looking at a problem)
involves visualizing units of traffic ("transactions") which move
along paths in a model as a simulation proceeds. This world view is
so natural to the modeling of queuing systems that many other
simulation languages have adopted it. The effect of this cross-
fertilization can be found in such languages as SIMAN (Pegden
1982), SIMSCRIPT (Russell 1983), SIMULA (Birtwistle 1979),
and SLAM (Pritsker 1986).

3. VARIOUS GPSS IMPLEMENTATIONS

GPSS is a multi-vendor language. (This is in contrast with such
languages as SIMAN, SIMULA, SLAM, and SIMSCRIPT.) First
released by International Business Machines (IBM) in 1961, GPSS
evolved through a series of IBM releases (GPSS II; GPSS III;
GPSS/360; and, in 1970, GPSS V (IBM 1970)), each an enhance-
ment of its predecessor. Paralleling the IBM releases, a number of
GPSS implementations were done for IBM and non-IBM hardware
by non-IBM vendors. (See GPSS VENDOR INFORMATION
below.)

Wolverine Software's GPSS/H (Release 1, 1977; Release 2,
1988), which is an upwardly compatible superset of IBM's GPSS V,
is the state-of-the-art GPSS for IBM mainframes and compatible
computers (e.g., the Amdahl 470 series, the Amdahl 5860, and
National Advanced Systems' NAS-9000) (Henriksen et al. 1988).

GPSS/H can be used on VAX computers as well, including the
MicroVAX I, MicroVAX 11, and MicroVAX 2000 ("desktop VAX");
and the 11/7xx and 8xxx machines. It also runs on Apollo; on Inte-
grated Solutions' Optimum 5/10 and Optimum V; on the NCR
Tower32; on Silicon Graphics' IRIS and IRIS Turbo; and on Sun
Microsystems' Sun-3. These non-mainframe implementations are
written in "C". A "C" implementation of GPSS/H also runs on
microcomputers under MS/DOS in both commercial and student
versions.

MINUTEMAN Software vends GPSS/PC, which is a popular
implementation of GPSS for the IBM PC. GPSS/PC was released in
Version 1 in 1984, Version 2 in 1986 (Cox 1986, 1987), and
Version 3 in 1989.

Another GPSS implementation for the IBM PC is Simulation
Software Ltd.'s GPSSR/PC (Richards 1981, 1983). Simulation
Software Ltd. also offers two other GPSS implementations:
GPSS/VX, for VAX/VMS systems and MicroVAX systems (Martin
1981): and GPSS/C, for such 32-bit architecture computer systems
as VAX UNIX, ELXSI UNIX, SUN-3 UNIX, PYRAMID UNIX,

NCR Tower UNIX, Data General MV/ECLIPSE, and the HP9000
Series 500 (Richards 1984).

Comments on the GPSS-FORTRAN (Schmidt 1987) offered by
a German company, Dr. Staedtler Gmbh, are given below under
LANGUAGES WITH GPSS EMBEDDED.

No one keeps a comprehensive list of current GPSS imple-
mentations. In general, people not in a position to use IBM's GPSS
V, MINUTEMAN's GPSS/PC, a Simulation Software Ltd. GPSS
implementation, Staedtler's GPSS-FORTRAN, or Wolverine's
GPSS/H, must do their own spadework to determine if a supported
GPSS implementation is available for their computer system.

4. GPSS, GRAPHICS, AND ANIMATION

MINUTEMAN Software's GPSS/PC, Version 2, provides
built-in graphic and simulation animation features, including showing
transaction movement in block diagrams; animation of movement of
objects in two-dimensional representations of the system being mod-
eled; and dynamic display of statistical aspects of a model, e.g., his-
tograms portraying the ongoing realization of a random variable's
relative frequency function; and plots of the time series of values
being taken on by variables of interest (Cox, 1987).

Simulation Software Ltd.'s GPSSR/PC also provides graphics
and animation features, including many which are functionally
equivalent to those described in the preceding paragraph.

At the time of this writing (mid-1989), animation capabilities are
in the process of being provided for GPSS/H, and are currently
being tested by selected GPSS/H users.

Wolverine Software's GPSS/H supports TESS (The Extended
Simulation System; Standridge 1985), which provides a relational
database manager, a graphics generator, a forms processor, a
graphical network builder, and a library of FORTRAN subroutines
for manipulating individual data items or data summaries.

AutoSimulations, Inc., offers AUTOGRAM (AutoSimulations,
Inc., 1986), which works with Wolverine Software's GPSS/H to
provide three-dimensional color animation of the system being
modeled. AutoSimulations, Inc., also offers AUTOMOD
(AUTOmatic MODel generator), a preprocessor for the GPSS/H
compiler. AUTOMOD converts high level system descriptions into
GPSS/H statements, and then passes them to the GPSS/H compiler.

5. LANGUAGES WITH GPSS EMBEDDED

The functions performed by the GPSS blocks have been
embedded in other languages in several cases. Embedding takes the
form of implementing the functions of the GPSS blocks and run-
control statements in a host language as subroutines which augment
the power of the host language. Calling these subroutines has the
effect of simulating the GPSS blocks and run-control statements.
For a paper on embedding, see Rubin (1981).

An instance of such embedding is GPSS-FORTRAN (Schmidt
1987), which sees use in Germany and Europe. GPSS-FORTRAN,
Version 3, which supports continuous modeling and combined
discrete-continuous modeling, as well as discrete-event modeling,
can be used in batch mode and interactively, and in real time. It can
be run on computer systems which have 1« FORTRAN compiler.

116

Other examples of embedding are APL-GPSS (IBM 1977) and
PL/1-GPSS (IBM 1981). (These implementations may no longer be
supported by IBM.)

6. GPSS VENDOR INFORMATION

Vendor addresses and phone numbers are given below. (Please
report omissions to Thomas J. Schriber.)

Internatonal Business Machines, Inc.
(GPSS V)
Contact your local IBM representative.

1.

MINUTEMAN Software Inc.
(GPSS/PC, Version 2)

P.O. Box 171

Stow MA 01775-0171

Phone: 508-897-5662

Simulation Software Ltd.

(GPSS/C; GPSSR/PC; GPSS/VX)
760 Headley Drive

London, Ontario, Canada N6H 3V8

Phone: 519-657-8229

Dr. Staedtler Gmbh
(GPSS-FORTRAN)

Muenchener Strasse 342

8500 Nuernberg 50 West Germany

Phone: 49/911/86-80-81
(49 is West Germany; 911 is Nuernberg)

Wolverine Software Corporation
(GPSS/H)

4115 Annandale Road
Annandale VA 22003-2500

Phone: 703-750-3910

Contact vendors for current leasing and/or purchase prices and
academic and quantity discount policies.

7. FIVE MYTHS ABOUT GPSS

GPSS was first released (by IBM) in 1961. Those familiar with
early versions of the language (including IBM's GPSS V, released in
1970, and now no longer up to date), but who haven't kept up with
state-of-the-art GPSS, may suffer from one or more major
misconceptions ("myths") about GPSS (Henriksen 1983):

1. Misconception: "GPSS is inherently slow."

Observation: Many early interpretive versions of GPSS
are slow. In contrast, some state-of-the-art implementations
produce compiled code and provide performance far superior to
old versions. (For example, Wolverine Software's GPSS/H
executes 5 to 6 times faster on average than IBM's GPSS V.)
Some other state-of-the-art versions, although not producing
compiled code, generate an intermediate level of code, making it
unnecessary to reinterpret each statement each time it is acted

upon (e.g., MINUTEMAN Software's GPSS/PC). (For a
published comparison of compilation and execution rates of
Wolverine Software's GPSS/H vis-a-vis SIMSCRIPT and
SLAM, see GPSS AND OTHER SIMULATION LAN-
GUAGES, below.)

Misconception: "To do anything sophisticated in GPSS,
HELP blocks must be used to combine GPSS models with
FORTRAN routines."

(Note: "HELP blocks" can be used in GPSS modeling to
interface an executing GPSS model with one or more external
routines written in such other languages as FORTRAN, C,
PL/1, or assembly language.)

Observation: The power of state-of-the-art implementa-
tions of GPSS is such that FORTRAN (or other) routines are
rarely required. Some current implementations (e.g., Wolverine
Software's GPSS/H) include general purpose 1/O statements,
for example, which make it unnecessary to use HELP Blocks
for I/O. And, when the use of FORTRAN routines is
convenient for such things as obtaining t or z statistics, such
routines can be directly invoked, without use of HELP Blocks.

Misconception: "GPSS is trivial to learn."

Observation: GPSS is trivial to learn only to a superficial
depth. While rudiments of GPSS can be learned in a day, real
mastery of GPSS requires considerable study (study at least
equivalent to taking a three-credit course, or a five day intensive
course) and practice.

Misconception: "Modeling difficulties arise more frequently
due to language shortcomings than due to lack of modeler
expertise."

Observation: Misconceptions about the lack of power of
GPSS come from people with an insufficient grasp of the lan-
guage. According to Geoffrey Gordon (1978), who originally
conceived GPSS, misconceptions about lack of power, where
the real problem is a lack of user expertise, have been
commonplace since the earliest versions of GPSS.

Misconception: "GPSS is batch oriented.”

Observation: It is of course true that early versions of
GPSS (from circa 1961 to 1977) were batch oriented. In
contrast, current versions are designed both for interactive and
batch use (e.g., GPSS/H; GPSS/PC; GPSS/VX; GPSS/C;
GPSSR/PC; GPSS-FORTRAN). State-of-the-art versions
offer powerful interactive monitoring capabilities which greatly
speed up the process of building GPSS models, debugging
them, and verifying them.

8. THE GPSS LEARNING-ORIENTED LITERATURE

There are several GPSS books (Carson, Banks, and Sy 1989;
Bobillier, Kahan, and Probst 1976; Cummings 1986; Donovan
1976; Gordon 1975; Greenberg 1972; Schmidt 1987; Schriber
1974: Schriber 1990; Stahl 1990; Sulzer and Bouteille 1970;
Weber, Trzebiner, and Tempelmeier 1983). Overviews of GPSS can
also be found in general simulation texts, e.g. Banks and Carson
(1984); Bratley, Fox, and Schrage (1987); Fishman (1978); Law
and Kelton (1982); and Solomon (1983).

117

The GPSS user's manuals may also contain good learning-ori-
ented material. For example, an instructive set of HELP block exam-
ples and of built-in I/O use is given in Henriksen et al.(1988).

GPSS is flexible enough to support taking a number of ap-
proaches to modeling a system. Tradeoffs involved are discussed in
Henriksen (1981; 1986), and in Henriksen and Schriber (1986).

The Proceedings of the 1989 (or 1988, 1987, etc.) Winter
Simulation Conference are good sources of papers on simulation
applications, including applications of GPSS. Until sold out, copies
of these proceedings can be purchased from The Society for
Computer Simulation (P.O. Box 17900, San Diego, California
92117, phone 619-277-3888).

9. GPSS AND OTHER SIMULATION LANGUAGES

Introductory descriptions of Wolverine Software's GPSS/H,
and of SIMAN, SIMSCRIPT I1.5, and SLAM I, are given in Banks
and Carson (1985). The world view of each language is described,
and one and the same problem is modeled in each language.

Qualitative and quantitative comparisons of GPSS/H, SLAM,
and SIMSCRIPT are given in Abed, Barta, and McRoberts
(1985a,b). The quantitative comparison is based on a manufacturing
job shop problem. "Both model size and model run length were
varied to obtain data on compilation time, execution time, CPU time,
memory time and the rate of change of these variables due to changes
in the simulation period” (quoted from the 1985b article, p. 45).
GPSS/H compiled 50 times faster than SIMSCRIPT and 10 times
faster than SLAM. GPSS/H executed 3.8 times faster than
SIMSCRIPT and 3.5 times faster than SLAM.

Guidelines for evaluating simulation software, and a good
comparison and contrast of various simulation languages (including
MINUTEMAN Software's GPSS/PC and Wolverine Software's
GPSS/H) and packages in terms of these guidelines, can be found in
Haider and Banks (1986).

10. PROFESSIONAL GPSS TRAINING COURSES
These GPSS training courses are available:

A four-day course featuring use of MINUTEMAN's GPSS/PC
is offered every several months in Corvallis, Oregon. Contact:

Mr. Gerald Airth

West Coast GPSS Training
1463 SW "A" Street
Corvallis, Oregon 97333

Phone: 503-754-7919

2. A five-day GPSS course is offered several times yearly at the

Georgia Institute of Technology. Contact:

Professor Jerry Banks

School of ISYE

Georgia Institute of Technology
Atlanta GA 30332

Phone: 404-894-2312

3. Five-day GPSS courses are given each May at The Ryerson

Polytechnical Institute in Toronto, Ontario, Canada. Contact:

Professor R. Greer Lavery

Ryerson Polytechnical Institute

Math, Physics, and Computer Science
350 Victoria

Toronto, Ontario, Canada M5B 2K3

Phone: 416-979-5000 XT 6972

Professor Thomas J. Schriber teaches intensive five-day GPSS
courses five times yearly. For information about the Ann Arbor
July offering, phone The University of Michigan's Engincering
Summer Conferences at 313-764-8490, or contact:

Professor Thomas J. Schriber

Computer and Information Systems - GSBA
The University of Michigan

Ann Arbor MI 48109-1234

Phone: 313-764-1398
Email: js@umichub.bitnet

For information about the November, February, and May
offerings, held in such places as Washington, D.C. (November
and May) and San Diego (February), contact either Professor
Schriber or:

Ms. Elizabeth Tucker
Wolverine Software

4115 Annandale Road
Annandale VA 22003-2500

Phone: 703-750-3910

Professor Schriber's five-day course is also taught each June in
Leuven, Belgium (just outside Brussels). Taught in English, the
course is hosted by Professor Dr. Maurice Verhelst and the
University of Leuven's Dept. of Applied Economics. Contact
Professor Schriber or Professor Dr. Verhelst:.

Professor Dr. Maurice Verhelst
University of Leuven

D.T.E.W.
Dekenstraat 2

B3000 Leuven Belgium

Phone: 32/16/22-75-17
(32 is Belgium; 16 is Leuven)

5. GPSS courses emphasizing applications in mining engineering
are taught periodically in Australia and Las Vegas, Nevada.

Contact:

Professor John. R. Sturgul

School of Mining and Metallurgy

South Australian Institute of Technology
P.O. Box 1

Ingle Farm 5098 South Australia

Phone: 08/343/3248
(08 is Australia)

118

11. THE GPSS TUTORIAL

In the GPSS tutorial at the Winter Simulation Conference, the
fundamentals of queuing system logic and the modeling elements of-
fered by GPSS to implement this logic will be introduced and illus-
trated. The tutorial will make use of transparencies, paper copies of
which will be distributed to those in attendance. Others can obtain
these materials from Professor Thomas J. Schriber (Graduate School
of Business, The University of Michigan, Ann Arbor MI 48109-
1234; 313-764-1398).

APPENDIX A: A GPSS MODEL FOR A ONE-LINE,
ONE-SERVER QUEUING SYSTEM

This appendix shows a GPSS model for a one-line, one-server
queuing system. The appendix consists of these sections:

A.l Statement of the Problem

A.2 The Approach Taken in Building the Model
A.3 The GPSS Block Diagram for the Model
A.4 The GPSS Model File

A.5 Discussion of Selected Simulation Output
A.6 Replications in GPSS

A.l1 Statement of the Problem

In a manufacturing system, castings are sent to a drilling
machine, where each casting is to have a hole drilled in it. The
interarrival time of castings at the machine is uniformly distributed
over the interval 15.0 + 4.5 minutes. The time required to drill a hole
in a casting is 13.5 + 3.0 minutes, uniformly distributed. Castings
are processed in first-come, first-served order. Model this system in
GPSS, making provision to collect queuing statistics for castings
waiting their turn to be drilled. When the simulation starts, no
castings are to be waiting to use the drill, and the drill is to be idle.
Perform a single simulation with the model, simulating until holes
have been drilled in 100 castings. Discuss the output produced at the
end of the simulation. Finally, perform eight independent
simulations with the model under the conditions described. Use the
resulting output to compute 90% confidence intervals for the
expected values of these three dependent random variables: (a) the
time required to drill holes in 100 castings; and, during the time
needed to drill holes in 100 castings: (b) the average number of
castings in line; (c) the average time castings spend waiting in line.

A.2 The Approach Taken in Building the Model

Consider the time-ordered series of events associated with a
casting as it moves through the one-line, one-server system:

1. The casting arrives at the system.

2. The casting requests the machine.

3. The casting waits, if necessary, to capture the machine. (If the

machine is idle when the casting arrives, waiting time will be
2€10.)

4. When its turn comes, the casting captures the machine.

5. The casting holds the machine in a state of capture while the ma-
chine drills a hole in the casting.

6. The casting gives up control of the machine.

7. The casting leaves the system.

Castings can be thought of as units of traffic which move
through the castings-and-machine system. The units of traffic in this
system are conveniently simulated in GPSS by language elements
known as "transactions". Transactions are units of traffic which are
created and introduced into a model from time to time, move along a
path in the model as the simulation proceeds, and then eventually are
destroyed (leave the model). The experiences of transactions as they
go through their life cycle in the castings-and-machine model are
analogous to the experiences of castings as they go through the
castings-and-machine system. Positioned on the path along which
transactions move are blocks. Each block represents a subroutine.
Movement of a transaction into a block causes the subroutine
represented by the block to be executed. By choosing appropriate
types of blocks, the GPSS modeler can easily build an appropriate
path (sequence of blocks) for casting-transactions to move along to
mimic the sequence of events outlined above.

The sequence of blocks begins with the type of block used to
create transactions from time to time during a simulation and
introduce them into a model, the GENERATE block. The time that
elapses between introduction of consecutive transactions into a model
by a GENERATE block is "interarrival time.” In this model, the
interarrival time random variable is uniformly distributed over the
interval 15.0 + 4.5 minutes. (15.0 £ 4.5 describes the interval
ranging from 10.5 to 19.5.) The values 15.0 and 4.5 are provided in
the model as GENERATE block operands. In programming
language terms, a block's operands correspond to the arguments
whose values are passed to a subroutine at the time of subroutine
execution. (In general, arbitrarily complicated interarrival time
distributions can be modeled at GENERATE blocks. This is done by
defining functions which describe the applicable distribution, then
using these functions as GENERATE-block operands.)

The sequence of blocks ends with a TERMINATE block. When
a transaction moves into a TERMINATE block, the block subroutine
destroys the transaction. A counter can be used with a TERMINATE
block so that, after a specified destroy count has been reached (a
count of 100 in this problem), a simulation will stop. (More
generally, arbitrarily complicated stopping conditions can be
specified in GPSS models.)

A SEIZE block is included in the sequence. A transaction
requests control of a single server by trying to move into a SEIZE
block. A SEIZE block operand is used to identify the single server.
If the server is idle when a transaction requests it, the requesting
transaction moves into the SEIZE block without delay and takes
control of the server. But if the server is currently under the control
of one transaction when another requests it, the requesting
transaction cannot move into the SEIZE block. Instead, it remains in
its current block and waits its turn to capture the server. In the
simplest case, turns come in the order of first-come, first-served. (In
general, arbitrarily complicated rules can be specified in GPSS to
control the sequence in which servers are captured by requestors.)

A RELEASE block is also included in the sequence. A
transaction which is in control of a single server gives up control by
moving into a RELEASE block. A RELEASE block operand is used
to identify the server involved.

119

GPSS automatically collects (and then, when a simulation stops,
prints out) statistical information about single servers modeled with
use of SEIZE and RELEASE blocks. (See section A.5 for an
example of these statistics.)

An ADVANCE block is used to delay transaction movement
along its path for a specified simulated time. In this model, an
ADVANCE block can be used to simulate the time required for the
machine to drill a hole in a casting ("service time"). The service time
random variable in this model is uniformly distributed over the
interval 13.5 + 3.0 simulated minutes. The values 13.5 and 3.0 are
provided in the model as ADVANCE block operands. (Arbitrarily
complicated service time distributions can be modeled at ADVANCE
blocks, of course. This is done by defining functions which describe
the applicable distribution.) By placing an ADVANCE block on the
path between SEIZE and RELEASE blocks, simulated time delays
between server capture and release can be modeled.

By moving into a QUEUE block, a transaction initiates
membership for itself in a queue, or waiting line. This membership
continues until the transaction brings its queue membership to an end
by eventually moving into a DEPART block. An operand is used at
the QUEUE and DEPART blocks to indicate the particular queue
involved. By placing a SEIZE block between QUEUE and DEPART
blocks, transactions will be members of a queue while waiting their
turn to capture a server. GPSS automatically collects (and then,
when a simulation stops, prints out) statistical information about such
queues. (See section A.S for an example of these statistics.)

Limited space does not permit a more complete explanation here
of the GPSS approach to modeling a one-line, one-server systen.
For a detailed explanation, see chapter 6 in Schriber (1990).

Note that seven types of GPSS blocks have been commented on
in this section (GENERATE; TERMINATE; SEIZE; RELEASE;
ADVANCE; QUEUE; DEPART). In total, there are more than fifry
types of blocks in GPSS. By appropriate use of these block types,
GPSS models of extremely complex systems can be built with
considerable ease.

A.3 The GPSS Block Diagram for the Modecl

The model described above is shown in the form of a block dia-
gram in Figure A.1 (see the next page). The block diagram consists
of a sequence of seven Blocks. (Each block type in Figure A.1 has
its own unique, arbitrary geometry.) A simulation performed with
the model will start with an empty queue and an idle server, uas
requested. (See Schriber (1990), chapter 6, for particulars.)

The Figure A.1 block diagram assumes implementation of the
model in Wolverine Software's GPSS/H, Release 2 (1987), which
uses a floating point simulated clock and therefore permits
specification of floating-point interarrival times at GENERATE
blocks and holding times at ADVANCE blocks. (In versions of
GPSS which use an integer clock, only integer-valued interarrival
times and holding times can be realized. In integer-clock versions of
this model, units registered by the simulated clock could then have
the implicit dimension of tenths of minutes (instead of minutes), and
the GENERATE and ADVANCE block operands could be stated as
"150,45" and "130,35." respectively.)

The text appearing adjacent to the blocks in Figure A.1 (e.g.,
“castings arrive"; "check into the drill queue") is not part of the
model, but is simply commentary which has been (optionally)
provided as documentation.

A.4 The GPSS Model File

Figure A.1 shows the block diagram for a GPSS one-line, one-
server model. To perform a simulation with this model, the
statement version of the Figure A.1 block diagram must be prepared,
and then supplemented with additional types of statements used to
control compilation and execution of GPSS models. The resulting
collection of statements must then be arranged in a model file. The
model file is simply a computer file which can be used as the basis
for performing one (or more) simulations.

Figure A.2 shows the model file corresponding to the Figure
A.1 block diagram. The statements making up the model file are
shown against 4 "background” consisting of column identifiers (e.g.,
LABEL; OPERATION; and OPERANDS) and horizontal and
vertical lines. The background is provided here only as a guide for
the eye. The model file statements themselves have such simple
forms as "SIMULATE"; "GENERATE 15.0,4.5"; etc.

A column of statement numbers ("STMT NO.") has been ap-
pended at the far left in the Figure A.2 model file to support
discussion here. Statements 7 through 13 correspond to the blocks
in Figure A.1. These statements (optionally) include documentation
text identical to that appearing in Figure A.1. For example, the text
"castings arrive” has been appended to statement 7, but is not an
operational part of the statement, and could be deleted.

Statements 1, 19, and 21 in Figure A.2 are examples of
statements used to control the compilation and execution of GPSS
models. They have been specified in Figure A.2 in such a way that
when the model file is submitted for execution, only one simulation
will take place. The simulation will stop when the 100th casting has
been drilled.

(Limited space doesn't permit detailed discussion of GPSS run-
control statements here. In general, however, flexible run control is
easily achieved in GPSS. As will be shown in section A.6, for
example, only a few changes need be made in the Figure A.2 model
file to specify that a series of independent simulations (replications) is
to be performed when the file is submitted for execution. Results
from these independent simulations can then be statistically analyzed.
See Kelton (1986) and Law and Kelton (1982).)

Any model-file statement beginning with an asterisk (*) is a
comments statement. Comments statements can (optionally) be
included in a model file to make it easier (for a person) to read the
model file. In Figure A.2, statements 2 through 6, 14 through 18,
and 20 are examples of such statements.

A.5 Discussion of Selected Simulation Output.

Selected output automatically produced at the end of the
simulation when the Figure A.2 model file was submitted for
execution is displayed in Figure A.3 (please turn the page for Figure
A.3). The displayed output consists of: (a) clock values; (b) block
counts; (c) server statistics; (d) queue statistics; and (e) random
number statistics, and will be discussed in that order.

(a) Clock Values

As indicated in Figure A.3(a), GPSS maintains two simulated
clocks: a RELATIVE CLOCK; and an ABSOLUTE CLOCK. The
ABSOLUTE CLOCK measures the simulated time that has elapsed
since the simulation began (that is, since simulated time 0.0). The
value of the ABSOLUTE CLOCK at the end of the simulation was

120

P N .
GENERATE castings
| S arrive
15.0,4.5
QUEUE check into

the drill queue

L

request/capture
the drill

check out of

DEPART |/~ "\
DRILLQUE the drill queue
ADVANCE drilling time
elapses
13.5,3.0
RELEASE | DRILL give up
v the drill
TEI%TE drilled castings
@ leave
Figure A.1: GPSS Block Diagram for a

One-Line, One-Server Queuing System

1488.9+. In other words, it took 1488.9+ simulated minutes to drill
holes in 100 castings in this replication.

The RELATIVE CLOCK has no special meaning unless one or
more RESET run-control statements are used in the model file.
RESET statements have not been used here, and so the RELATIVE
CLOCK has no special meaning in Figure A.3(a).

(When a RESET statement is included in a model file and is
executed, statistical aspects of the model are reinitialized, but units of
traffic (transactions) are left intact wherever they are in the model at
the time of RESET statement execution. RESET statements are a
useful tool for eliminating biased statistical observations in cases
when a simulation proceeds through transient conditions and into a
steady state of operation. The RELATIVE CLOCK tells how much
simulated time has elapsed since a RESET statement was most
recently executed. When there are no RESET statements in a model
file, the RELATIVE and ABSOLUTE CLOCKs have identical
values, as in Figure A.3(a). For more particulars, see chapter 2 in
Schriber (1974)).

55

No. |1| LaBEL OPERATION [}| OPERANDS _
Y SIMULATE set a 1-CPU-Second time trap
2 % *
3 % 3 Pl e ke ok ok s de ok ok ok ook ok ko Sk ok ok ook ook ok ok sk s ok ok ok ok s ok sk e ok sk ok ke ok sk ok ok sk sk sk ok sk ok ok koK ok ko sk ok K K ok Kk ok
4 > [* Model Segment 1 (Movement of Castings Through the System) *
5 % e ple e ok sk ok ok e b ok Sk ok 3 ok ok s de ok ok ok s ok sk ok sk ok ok sk ok sk sk ok sk ok ok sk ok ok ok koK s sk ok ok ok ok ok ok ke ok ok ok e ok ok K ok K ok o Kk ok ok
6 — |*
7T GENERATE 15.0,4.5 castings arrive
8 > QUEUE DRILLQUE check into the drill queue
9 D> SEIZE DRILL request/capture the drill
10 > DEPART DRILLQUE check out of the drill queue
1n - ADVANCE 13.5,3.0 drilling time elapses
12 5 RELEASE DRILL give up the drill
13 > TERMINATE drilled castings leave

14 > [*

15 % 3k Bl ok sk sk ok ok 3k dk ok 3k ok ok sk sk ok ok ok ok ok sk ok ok sk sk sk ok ok sk ok ok sk ok ok ok k sk sk sk sk sk sk ok sk sk ok Kk sk sk sk sk ok ok ok ok ko ok sk sk ki ok sk k

Run-Control Statements

16 = |*

*

17 9 sk Pl ok ok 3k ok ke ak e ok ok ok ok 3k ok ok ok sk ok ok sk Sk ok sk sk sk sk ok sk ok ok ok 3k ok sk sk sk ok sk sk ok ok ok ok 3k ok sk ok ok ok ok ok dk sk ok ok ok K K ok ok sk ok Kk

18 > [*

19 START 100 start the simulation

20 > |*

21 D END end of model-file execution
Figure A.2: A GPSS Model File

for the Figure 1 Block Diagram

(b) Block Counts

Blocks in a model are assigned location numbers as part of
model compilation. These numbers are assigned serially, from 1
forward, in the top-down order in which blocks (block statements)
appear in the model file. In Figure A.3(b), the leftmost column (the
column labeled BLOCK) contains the numbers 1 through 7,
corresponding to the 7 blocks in the Figure A.2 model file. The
GENERATE Block is in location 1, the QUEUE block is in location
2, ..., the TERMINATE block is in location 7.

In Figure A.3(b), the second column (the column labeled CUR-
RENT) shows the counts of the number of transactions currently in
the corresponding blocks at the time the output was produced. When
the CURRENT count is zero, printing of the zero is suppressed. The
only block with a nonzero CURRENT count in Figure A.3(b) is the
block in location 2, the QUEUE block. (When the Figure A.3

121

printout was produced, there was 1 transaction in the QUEUE block,
simulating a casting waiting its turn to use the drilling machine.)

The third column in Figure A.3(b) (the column labeled TOTAL)
shows the counts of the number of transactions which moved into the
corresponding blocks during the simulation. For example, the
TOTAL count at the location 1 GENERATE block is 101, indicating
that 101 casting-transactions came into the model through that block.
The TOTAL count at the location 2 QUEUE block is also 101,
indicating that all 101 of these casting-transactions initiated
membership for themselves in the queue of castings waiting their turn
to use the machine. The TOTAL count at the location 3 SEIZE block
is 100, indicating that 100 of these casting-transactions captured the
machine during the simulation. (Of the 101 casting-transactions
which moved into the location 2 QUEUE block, 100 eventually
moved into the location 3 SEIZE block, and one is still in the
QUEUE block.)

