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ABSTRACT

This paper considers the problem of determining the best of
a finite number of system designs by simulation experimenta-
tion when the criterion of interest is maximum or minimum
expected performance. This is a special case of the general
problem of optimization via simulation. The proposed method
is based on multiple comparisons with the best (MCB), due
to Hsu, which constructs simultaneous interval estimates for
the difference between the expected performance of each sys-
tem design and the best of the other designs. We propose a
refinement of Hsu’s procedure through the use of two variance
reduction techniques, common random numbers and control
variates, that are particularly useful in simulation experiments.
We show that the proposed procedure is better than standard
MCB in the sense that it is more sensitive to differences in

expected performance.

1 INTRODUCTION

One of the primary uses of stochastic simulation is to compare
alternative system designs, often in terms of expected perfor-
mance since actual performance is subject to random variation.
Frequently the goal is to find the system design having max-
imum or minimum expected performance. When the number
of alternative system designs is finite and not too large, there
are two standard approaches for solving this optimization prob-
lemn: ranking and selection and multiple comparisons. Ranking
and selection procedures yield a decision (e.g., which system
design has maximum expected performance), while multiple-
comparison procedures provide estimates (e.g., the difference
between the expected performance of each system design and
the best of the other system designs). This paper describes an
approach based on multiple comparisons.
Multiple-comparison procedures provide confidence inter-
vals for specified differences in expected performance, confi-
dence intervals that are guaranteed to be simultaneously cor-
rect with a prespecified probability. There are a number of
multiple-comparison procedures, and the appropriate one de-
pends on the comparisons of interest. Hsu and Nelson (1988)

describe multiple comparisons with the best (MCB), which 1s
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particularly useful when the goal is to find the system design
having maximum or minimum expected performance. This pa-
per presents a refinement of MCB.

Since multiple-comparison procedures provide interval esti-
mates of differences in expected performance, an interval that
contains zero when the true difference is not zero indicates
there is insufficient evidence in the simulation data, relative to
the variance of the estimators, to declare the performance of
the two systems to be different. The refinement we present uses
variance reduction techniques—common random numbers and
control variates—to decrease estimator variance, and thus in-
crease the sensitivity of MCB to small differences in expected
performance. The primary contribution of this paper is to
extend the use of common random numbers to simultaneous
estimation of several differences, a longstanding problem in
simulation output analysis.

The next section presents a simple example that illustrates
the type of problem for which MCB is useful. Section 3 reviews
MCB, and motivates the need for variance reduction. Section 4
introduces the refined MCB procedure; section 5 compares the
performance of the new MCB procedure to standard MCB on

the example. Section 6 offers some discussion.

2 EXAMPLE

The example is an (s, S) inventory model taken from Koenig
and Law (1985). This section and the next is based on Hsu
and Nelson (1988).

An (s5,5) inventory system is one in which the level of in-
ventory of some discrete item is reviewed periodically. If the
inventory level is found to be below s units, then enough addi-
tional inventory is ordered to bring the inventory level up to S
units. When the inventory position at a review period is found
to be above s units, no additional items are ordered. Different
(s,S) combinations correspond to different “system designs.”

Let {I;;t =1,2

) Sy

..} be the inventory position just after a
review at period t. Orders are filled immediately, so I, € {s,s+
l,s+2,...,5}. Let {D;t =1,2,...} be a stochastic process
representing the demand for units of inventory in period ¢. The

inventory position I, changes in the following way: I ;, = S if



Table 1: Parameters and Expected Cost for Inventory Example

i s S 6,
1[20| 40| 114.18
2120] 801112.74
3140 | 60| 130.55
440 100 | 130.70
560|100 | 147.38

I,—D, < s,or Iy = ;=D if I, - D, > s. We assume that I,
S and {Dy;t =1,2,...} is a sequence of i.i.d. Poisson random

variables with common mean 25. Under these assumptions
{I;;t=1,2,...} is a Markov chain.

In each period there are costs associated with the inventory
position. If I, — D, < s, then in period ¢ + 1 a cost of 32 +
3(S — (I, — Dy)) 1s incurred, which is a fixed cost plus a per
unit cost of bringing the inventory position up to S. In period
t+ 1, if I41 = D4, then a holding cost of I,4; — D4, dollars
is incurred; otherwise a shortage cost of 5(Dy4; — I14;) dollars
is incurred.

Let C; be the cost incurred in period ¢ under policy ¢, where
“policy” means an (s, S) combination. The quantity of interest
is the expected average cost of the inventory system for 30 peri-
ods under several (s, S) policies, with a smaller expected total
cost being preferred. The five policies considered by Koenig
and Law are given in Table 1.

Let

1 &

B ED c,]
be the expected average cost for policy i. The values of 6; given
in the table, which were taken from Koenig and Law (1985),
can be obtained using standard Markov chain analysis. Of
course, in a practical problem these values would not be known,

but knowing them here facilitates evaluating MCB procedures.

3 MCB

Suppose that r > 2 system designs are to be compared in
terms of their expected performance, and denote the expected
performance of the ith system by 6,0 = 1,2,...,7. If finding
the systern with the largest mean performance is of interest,
then 6, — maxsz, p,t = 1,2,...,r are the appropriate param-
eters to estimate, since if 6, — max,z 6, > 0, then system i
is the best systern; otherwise, it is not the best system. In
minimization problems, such as the (s,5) inventory example,
the parameters of interest are 6, — mingyg, B, 0 = 1,2,...,r,
since if 6, — mingg, 6, < 0 then system i is the best system. Of
course, minimization problems can be transformed into max-
imization problems by changing the sign of all terms. Hsu’s
(1984) method of MCB, which we describe next, provides si-

multaneous confidence intervals for #, — maxeg, s, for all :. By
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the nature of multiple comparisons, the fewer the number of
statements that must be simultaneously correct, the sharper
the inference. If maximum or minimum expected performance
is most important, then MCB, which gives simultaneous con-
fidence intervals for r parameters, is typically superior to pro-
cedures that provide confidence intervals for the r(r — 1)/2
differences 6, — 6, for all i # ¢.

Let Y); be the jth simulation output from the ith system
design and suppose 6, = E[Y,,] for all j. MCB is applicable if

the balanced oneway model (1) pertains:

y:] =0i+5u (1)

for 2 = 1,2,...,r and j = 1,2,...,n, where €11,€12,...,En
are independent N(0,0?) random variables with ¢? unknown.
Model (1) implies that n independent replications are gener-
ated from each system, and the systems are simulated inde-
pendently of each other. In the inventory example Y;; would
be the average cost for 30 periods of the ith (s,S) inventory
policy on the jth replication.
Let 6,,6,,...,6, be estimated by the sample means

- 1 - -
}'_g;y'h

fori =1,2,..

variance

.,7, and let 52 be estimated by the pooled sample

" 1

- 2
U_r(n—l) &

22 (¥, =Y,
1=1 =1

The constants n and r, and the random variables ¥;,...,Y,

and 42, are the inputs to MCB.
Let di’—l.r(n—l)
that is the maximum of r — 1 equally correlated multivariate-t

be the upper « quantile of a random variable

random variables with correlation 1/2 and r(n — 1) degrees of
freedom, and let +2* = max{0,r} and —z~ = min{0,z}. For
model (1), Hsu (1984) showed that the closed intervals

[-— (}—', — max Y, - dg—l,r(n—l)&/\/—ﬁ) )
B _ +
+ (}/. - l‘Ill#a;X Yl + d?—l,r(n-l)&/\/ﬁ> ]

for : = 1,2,...,r are (1 — «)100% simultaneous confidence
intervals for 6, — maxy, 6, for all i. A detailed proof is given
in Hsu and Nelson (1988).
To apply MCB to the inventory example, let C'}’ be the cost
in period t of (s,.5) policy i on the jth replication. Then
1 20

Scr

t=1

T
That is, Y;, is the average cost of 30 periods of operation under
For model (1) to be tenable, the

experiment must be designed so that, for fixed policy ¢, Y,,,

policy ¢ on replication j.

j = 1,2,...,30 are i.i.d.,, and Y;, are independent for all ¢

and j. In practice, this means that different random number



streams are used to generate demand values for the simulation
of each policy. Subroutine rnpoi from the IMSL Library was
used to generate demands from the Poisson distribution in this
simulation.

We are interested in simultaneous confidence intervals for
6; — mineg, 0, : = 1,2,...,5. That is, the difference between
the expected average cost of each policy and the least expected
average cost of the other policies. Figure 1, which is reproduced
from Hsu and Nelson (1988), shows the confidence intervals
from one experiment with n = 30 replications and « = 0.05.
The numerical values are given in Table 2.

With confidence level 0.95, policies 3, 4 and 5 are not the
best since the lower endpoint of their intervals is ), meaning
that the difference between the expected cost of each of these
policies and the other policy with the least expected cost is
greater than or equal to 0. Although policy 2 appears to be
the best, we cannot conclude that it is the best since the inter-
vals for policies 1 and 2 contain 0. The 95% upper confidence
bound for 6, — miney, 6; indicates that policy 2 may be worse
than the true best policy by as much as 1.267. Stated differ-

ently, the random variation in ¥;,...,Y; is too large relative

Table 2: Example MCB Result for Inventory Problem

_ |- min _
i ‘ V| Yi—-t#£:7, interval
11 114.043 1.046 | (-1.267, 3.359)
21 112.998 -1.046 | (-3.359, 1.267)
3 ’ 131.055 18.057 | (0.0, 20.370)
4 131.749 18.751 | (0.0, 21.064)
5| 146.715 33.717 | (0.0, 36.030)

Inventory MCB Confidence Intervals

Cost
8

-10 1 L 1 Il !

Policy

Figure 1: MCB Intervals for Inventory Problem

to the differences 6, — mingy, 6¢ to determine the best (s,5)
inventory policy. Increasing n would reduce the variability,
but at additional computation cost. And, if the simulation
experiment has already been performed, then the experiment
must be repeated, or at least restarted, to increase n. In the
next section we introduce a refinement of MCB that reduces

variability without increasing n.

4 MCB AND COMMON RANDOM NUM-
BERS

In stochastic simulation experiments the response variable, Y,
often has a strong linear relationship with certain input random
variables that drive the simulation experiment. Suppose the

response variable can be described by the following model:
y"J = 0‘ +.B:(XJ - /"') + hj (2)

for e =1,2,...,r and j = 1,2,...,n, where 1, ma2,..+,%m
are independent N (0, 7?) random variables with 72 unknown;
X1, Xs,..., X, are i.1.d ¢ x 1 vectors of input random variables
with known mean vector u; 3, is a ¢ x 1 unknown constant
vector; and / indicates the transpose of a matrix.

Recall that in model (1), Var[V¥;,] = 2, for all : (differ-
ent systems). In contrast, model (2) implies that Var[¥;;] =
72 4+ B,Xx3,, where £x = Var[X,]. and these terms are not
necessarily equal for all 7. However, model (2) assumes a linear
relationship between Y;; and X;, while (1) does not specify any
such relationship between the simulation inputs and outputs.

Let 6,,6,,...,6, be estimated by the control-variate esti-

mators
b, =Y, - BI(X - ),
fori=1,2,...,r, and let 72 be estimated by
Y 1 L ,
TE r(n—¢-1) ;;DU b= B —w)
where
l n
X=-3X
n
and

w
Il

Sxx Sxv,
-1
R . .
= [_ SUX, - X)X, - X)']
n—lj___1
1 n - -
“ {— DX =Xy, — Y.)} .
“_11=l

Notice that we have assumed that the X, . called the con-
trol wariates, follow identical distributions across system de-
signs; i.e., they are independent of i. Thus, if we use common

random numbers (CRN) to generate these inputs then the con-



trol variates are identical across systems. For example, in the
(s,5) inventory problem different inventory policies result in
different system designs, but the demand ou each system is
independent of the inventory policy simulated. If the total de-
mand during the planning horizon, X = ¥3%, D, is the control
variate then CRN results in the same total demand for each
inventory policy. The 5, term in model (2) represents sources
of variation that are not explained by the linear relationship
or cannot be made identical across systems through the use of
CRN; they must be independent for model (2) to be tenable.
In practice this means that different random number streams
must be assigned to different systems for those input processes
that cannot be made identical using common random numbers
(see section 6 for further discussion of this point).

Let 62 = n~l+(n— 1)"4X —1)'S¥ (X —p). The constants
n.q and r, and the random variables 8,....,0,, 7* and 62, are

the inputs ro the new MCB procedure given in Theorem 1.

Theorem 1 Assuming model (2) holds,

[— (9, — max 0, — df—],r(n—q-nb"f) ,
. . § LTt

for i = 1,2,...,r, are simultaneous (1 — «)100% confidence

intervals for 6, — max,y, 6, for all @,

The proof is given in Yang (19%89). Critical to the proof
is the fact that under model (2) the conditional variance of 6,
given the control variates is 6272, so that using common random
numbers for the control variates causes 62 to be common for

all ¢.

5 EVALUATION

The event that the MCB confidence intervals contain the true
differences 6, —maxy, 8, for all 7, and, at the same time, do not
contain 0 (except as an endpoint ) when 6, # max;y, ; is impor-
tant since it implics both identifying a difference and the direc-
tion of the difference. This could be called correct and useful
inference. When model (2) holds and n is not too small, b, is a
hetter point estimator of 6, than Y, in terins of smaller variance
(Lavenberg and Welch 19%1). Yang (1959) shows that when n
is not too small the expeeted length of the MCB intervals using
CRN and control variates is shorter than the cxpecred length
of the standard MCB intervals. Thus, when both MCB proce-
dures achieve the nominal coverage probability 1—a, we expect
the new procedure to have a larger probability of correct and
useful inference.

In this section we cornpare the new procedure to the stan-

dard MCB procedure, in terms of the probability of correct
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Table 3: Estimated Probability of Coverage (C') and Proba-

bility of Correct and Useful Inference (C&U) for a = 0.05
(standard error of estimates < 0.02)
n|Pr{C}] Pr{C} Pr{C&U} I Pr{C&U}
MCB  MCB+CRN| MCB |, MCB+CRN
0] 097 0.97 0.09 | 019
20| 0.96 0.97 017 0.31
30| 0.95 0.96 026 | 046
40| 0.96 0.98 0.31 | 0.58
50| 0.96 0.96 0.39 \ 0.68
60 | 0.93 0.97 047 | 0.77
70| 0.94 0.96 052 | 0.4
80| 0.94 0.98 057 | 088
00 | 0.94 0.98 0.60 | 092
100 | 0.94 0.98 068 095

and useful inference, by simulation experiments on the inven-
tory example. Of course, this is only an illustration on a single
example. A more complete experimental evaluation is given in
Yang (1989).

The coverage probability and the probability of correct and
useful inference were estimated for the new and standard MCB
procedures for n = 10,20, 30,...,100 replications at the a =
0.05 level by repeating the entire experiment 700 times. For
the standard procedure each inventory policy was simulated
independently (different random number streams were used to
generate demands under each (s, 5) policy), while for the new
procedure CRN (a single random number stream) was used
to make demands identical for each policy. IMSL subroutine
drgivn was used to compute the control-variate estimators via
least-squares regression.

Table 3 gives the results, which show that both procedures
appear to have coverage at least 95%, but the new procedure
dominates the standard MCB procedure in terms of the proba-
bility of correct and useful inference. Notice that in both cases
the probability of correct and useful inference is significantly
lower than the coverage probability unless n is large, which fur-
ther emphasizes the value of variance reduction. As n — oo
the probability of correct and useful inference converges to the

coverage probability.

6 DISCUSSION

When the linear relationship (2) holds, we suspect that the
equal residual variance assumption of model (2) is often less
severely violated than the corresponding equal variance as-
sumption for model (1), becanse model (1) is a special case
of maodel (2) with 3, = 3, for all ¢ and ¢. Thus, if the linear re-
lationship holds, the assumption of model (1) is stronger than

that of model (2) in the sense that it implies that the depen-



dence between the response variable and the control variates
is the same for all systems.

On the other hand, if the linear relationship (2) does not
hold then the control-variate point estimators are biased (Nel-
son 1988). Since multiple-comparison procedures construct es-
timates of differences, however, the bias of the estimators may
cancel out. Thus, multiple-comparison procedures based on
control-variate estimators are expected to be robust to devia-
tion from the linearity assumption.

CRN, as it is typically applied, reduces Var[¥; — Y3}, pro-
vided it induces positive correlation between Y; and Y7 for i # .
Thus, we would also expect CRN to reduce Var ’}'} — maXyg, 17,_].
This variance reduction is achieved without the necessity of as-
suming either models (1) or (2), and it could be that Var [)_".——
MaXeg, Y_}] < Var [9, — MaXyg, 93] , since CRN can be used on all
input processes in the former case, but—in our formulation—
may not be used on all input processes in the latter. How-
ever, it is difficult to construct interval estimators based on
¥; — maxe, ¥; under CRN—except by using very conservative
methods such as the Bonferroni inequality—because the corre-
lation between Y, and Y; is unknown.

The limitation in our formulation is that the control vari-
ates X,,j = 1,2,...,n must assume identical values across sys-

tems. This assumption may not be necessary. The assumption

implies equal conditional variance of the control-variate estima-
tors for different systems; therefore, the appropriate quantiles
(e.g., d*

r=1,r(n—

o-1)) are easily calculated. In general we only
need to know the ratios of the variances of estimators for dif-
ferent systems; equality is not required. More precisely, we
only need equal residual variances for different systems under
model (2), and estimators with a diagonal correlation matrix,
in order to compute appropriate quantiles (Hayter 1989, Ed-
wards and Hsu 1983). Extensions in this direction are under

investigation.
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