Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

COMBINING SOFTWARE ENGINEERING PRINCIPLES
WITH DISCRETE EVENT SIMULATION

Bernard J. Schroer

Fan T. Tseng

University of Alabama in Huntsville
Huntsville, Alabama 35899

ABSTRACT

This paper presents an approach for using the
concepts of software engineering to improve the simu-
lation modeling environment. This approach is
demonstrated by discussing the Automatic
Manufacturing Programming System with a graphical
user interface.

1.0 INTRODUCTION

The concepts of software engineering offer an
approach to minimizing software development problems
and to improving the overall simulation modeling
environment. Software engineering encompasses the
entire life cycle process by which a program is con-
ceptualized, structured, programmed, verified, vali-
dated, and maintained. The goal of software
engineering is to develop quality code, on time, and
within budget. To meet this goal requires a variety
of programming tools such as a good language with a
library of reusable modules, a flexible editor, and a
potent debugger.

2.0 MODELING LIFE CYCLE

Figure 1 outlines the phases of the model 1ife
cycle, or the model development (Balci 1986 and Nance
1988). Basically, the modeling process is iterative
rather than sequential as indicated in Figure 1.
That is, the modeler goes back and forth between the
various phases during the modeling process.

Rapid prototyping is a technique used in soft-
ware engineering for capturing system requirements
early 1in the modeling 1life cycle so that these
requirements can be evaluated, tested, verified and
validated early in the process before starting the
actual coding. The end result of rapid prototyping
is the potential for large increases in productivity.

An element of rapid prototyping is the automatic
conversion of the communicative model into executable
code. Automatic Programming (AP) is defined as the
automation of some aspects of the computer
programming process (Barr 1982). This automation is
accomplished by developing another program, an auto-
matic programming system, that raises the level of
specifying computer program instructions. In other
words, an AP system helps programmers write programs.
AP systems improve the overall environment for
defining and writing programs (Brazier and Shannon

1987). Consequently, there should be a reduction in
the amount of detail that the programmer needs i>
know.

828

Shou X. Zhang
Northwestern Polytechnical University
Xian, Shaanxi

Peoples Republic of China

| Formulate Conceptual
problem model
9
" Develop Communicative
model model
Iy
mn Write Programmed
model model
Iy
Veriv and
v -
valigate model
A
Experiment | 3 Model
v with model results
o
Vi Maintain
model
Figure 1. Phases In the modeling life cycle

Figure 2 shows the overlaying of automatic
programming onto the modeling life cycle in Figure 1.
Phase II , model development, has been replaced by a
user interface program that assists the modeler in
defining the problem specification. Three approaches
are commonly used by the user interface in defining
the problem specification. These approaches are an
interactive dialogue interface, a graphical inter-
face, and a natural language interface.

Also, Phase III, write model, has been replaced
by an automatic code generation program. Many code
generators take advantage of the concept of code
reusability and have a library of predefined software
modules or macros. These macros are written in the
target simulation code and are merged within the
simulation code.

3.0 RESEARCH OBJECTIVE

The focus of this paper is on using the concepts
of software engineering to improve the simulation
modeling environment for modeling manufacturing
systems. Of special interest is to apply an element
of rapid prototyping, or automatic programming, to
assist the modeler define the problem specification
as defined by Phase II 1in Figure 2. Then, once the
problem specification has been defined, an automatic
code generator is used to write the simulation code.
This step is defined by Phase III in Figure 2.

4.0 AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM

The Automatic Manufacturing Programming System
(AMPS) is a software engineering tool for rapidly
prototyping selected phases of the simulation process
for domain specific manufacturing systems. The AMPS
system consists of the following elements:

° Set of generics manufacturing modules writ-
ten in GPSS/PC (Minuteman 1986)

° An interface program for extracting the problem
from the user and for creating a problem spe-
cification file

° An automatic code
creating the code
language GPSS/PC

generator program for
in the target simulation

A thorough review was made of a number of manu-
facturing systems. This review resulted in a set of
functions that was common to manufacturing systems.
These common functions are:

Tasking

Assembly
Inspection
Inventory transfer
Manufacturing

© 0o o o o

The three common user interface programs for
extracting the problem from the user and for creating
the problem specification file are: interactive
dialogue interface, interactive graphical interface,
and natural language interface. The AMPS system was
initially developed using the interactive dialogue
interface (Schroer and Tseng 1988). The AMPS system
takes the user through a series of questions. Based
on the responses by the user, the system follows
various branches in defining the problem specifica-
tion. Initially, the AMPS system was written in Lisp
on a Symbolics 3620 workstation. Since the majority
of the end users did not have a Symbolics, a second
system was written in Pascal for the IBM PC.

829

Formulate
problem

User
interface

Problem
specification

—» Conceptual
model

| Automatic
code generator :

Library of
macros
7

Programmed
model

!

Verify and
validate model

!

Experiment
with model

!

Maintain
model

Model
results

vi

Figure 2. Software engineering Imbedded in the modeling
life cycle

The AMPS/Graphics wuses a graphical interface.
The user now defines the problem specification by
creating a graphical process flow chart on the
workstation. This paper focuses on the graphical
interface program. Special emphasis is on the struc-
ture of AMPS/Graphics, the system operation, and a
comparison with the original interactive dialogue
interface.

There were several reasons
selecting the interactive user
First, the overall

for initially
interface approach.
coding was the easiest of the
three approaches. Second, changes could be readily
made to the program. And third, since the overall
approach was still being finalized, an initial proto-
type could be delivered more quickly.

Figure 3 gives a comparison
approaches., Of special interest is the amount of
time to develop each system. Both of the versions
developed on the Symbolics were written by the same
individual with the graphics versions written last.
Notice that the interactive dialogue version required
six man-months while the graphics version required
fifteen man-months. The Pascal version required
three months and was written by another person.

of the three

Interactive dialogue interface Interactive graphical interface
Parameter AMPS AMPS/PC AMPS/Graphics
Development
platform Symbolics 3620 IBMPC Symbolics 3620
Programming
language Lisp Turbo Pascal Lisp
Lines of code 1500 1900 3500
Time to develop
program {man-
months) 6 3 15

Figure 3. Comparison of AMPS verslons

5.0 AMPS/GRAPHICS OVERVIEW

An overview of the AMPS/Graphics system is given
in Figure 4. The user sits at a Symbolics 3620
workstation to create or modify the model. The out-
put of the graphical user interface program is the
problem specification file. The automatic code
generator program combines the specification file
with the selected GPSS/PC macros and writes the simu-
lation program. The program is then downloaded to
the IBM PC and executed by the GPSS/PC system. To
modify the program, the user recalls the problem spe-
cification file and the cycle repeated.

6.0 AMPS/GRAPHICS DESCRIPTION

The tree structure of the AMPS commands is given
in Figure 5. The system consists of five menus:
Main, Model, Layout, Specification and GPSS. In sum-
mary, the Main Menu contains the master control com-
mands. The Model Menu contains the commands for
creating, editing, saving, and reading models. The
Layout Menu contains the commands for constructing
the model. The Specification Menu includes the com-
mands for defining the model parameters. The GPSS
Menu contains the commands for writing the simulation
code.

Figure 6 is a list of the icons available in
AMPS. These icons serve as the construction blocks
in defining a manufacturing system. To define a
manufacturing system the user selects these icons and
develops a process flow showing the various stations
and the flow between the stations. Figure 7 gives
all the feasible connections between the icons. For
example, it is not feasible to connect an inspection
station to a manufacturing cell.

The function and connection rules for each of
the icons are documented within the system. The user
can click on an icon to learn the function and the
rules of the icon. A1l the connection rules are
implemented in the system as construction rules of
the models. As the user creates a model, the AMPS
checks the partially completed model immediately for
possible Tocal violations of the rules. For example,
Figure 8 shows the rules for an assembly station.

830

Symbolics 3620

Library of Model
icons

rules

retrieve and
modify

create or
modify

construction

Define experiment

Library of
GPSS/PC
macros

Graphical Problem Automatic
user specification code
interface file generator

Download

GPSS/PC
program

GPSS/PC

User

Possible modifications

simulation
system

Report of

simulation
results

Figure 4. AMPS/Graphics system overview

L Maln Menu IQ————-

v v v

Model Show GPSS Download Help Quit

Demonst

Model Menu

Create Edit Save Read Erase Main Menu

L

v

ration System Information

I Layout Menu

Draw Icons Delete Objects Connect Icons

Layout Complete Grid Main Menu

On Off Layout Menu

I Specliication Menu j

Specify lcons Specification Complete ~ Main Menu ———

Create GPSS Main Meny————————/

Figure 5.

|

AMPS/Graphics commands

Icon Function

Assembly station
Starting point of an
assembly line
Demand stock point of

pull inventory system

Ending stock point of
final product

Inspection station

Manufacturing cell

Stock point for part
ordered from outside

Stock point for push
inventory system

@0 o P R ® © 0

Supply stock point of
pull inventory system

Task station

Flgure 6. Library of AMPS/Graphics Icons

When the oracess flow has been completely drawn,
the AMPS/Graphics will check the completeness of the
structure. After the layout has passed the check for
completeness, the user enters the parameters of the
manufacturing system. The user then clicks on each
jcon to input the specification. A parameter menu
will pop up on the screen. Figure 9 shows the para-
meter menu of an inspection station. The user can
move the cursor to each field to enter the data. The
system then performs additional checking. For
example, the AMPS will check whether the data are the
right types for the fields. The AMPS will make cer-
tain that an initial inventory level is not larger
than the capacity.

7.0 SAMPLE PROBLEM

Figure 10 is an example of a simple manufac-
turing system formulated using the AMPS/Graphics
system. The manufacturing system consists of an
assembly line, MAIN and two assembly stations, STAl
and STA2. The assembly 1line produces part A.
Station STAl assembles part C to the incoming part
and passes it to station STA2. Station STAZ then
assembles part B to the incoming part from station
STAl and produces part A. Part C is supplied through
a pull inventory control system from manufacturing
cell MC. A part C is made of parts D and E at the
manufacturing cell MC. parts B, D, and E are
supplied from outside sources.

831

Destination icon

® |2 (A

" »* * * »

Originating icon

pleloloBile e

Figure 7. Valild AMPS/Graphics icon connections

Parts arriving at the assembly line follow the
exponential distribution with a mean of 100. The
assemble time of each of the two stations is a
constant 100. Station STAl requires one part C and
station STA2 requires one part B for an assembly.
The stock point to hold the final product, part A,
has a capacity of 1000 units.

Part C is used at station STAl and is manufac-
tured at manufacturing cell MC. A pull inventory
system controls the production and shipment of part
C, which is represented by a pair of supply and
demand stock points. A vehicle WGIG is used to move
the carts between the stock points. The time to move
the carts is 10. Each cart has a capacity of 4 parts
C. Initially there is a cart of parts C at each of
the supply and demand stock points. Parts B, D, and
E are supplied from outside sources. Initially there
are 1000 units for each part type.

Manufacturing cell MC makes part C. One part D
and two parts E are used to make one part C. The
manufacturing time is 100 and there is no setup time.

The model is created by selecting the Model com-
mand from the Main Menu and the Create command from
the Model Menu (See Figure 5). The actual layout of
the model is created by using the commands Draw Icons
and Connect Icons in the Layout Menu.

After the model has been completely drawn, the
Layout Complete option is selected to start spe-
cifying the model parameters. Figure 11 shows a por-
tion of the model parameters. To specify an icon the
user simply clicks on the icon when the AMPS is in
the Specification Menu.

Both the layout and the parameters can be saved
for future use through the Save command in the Model
Menu. At the completion of the problem specifica-
tion, the user selects the Specification Complete
command to end the model specification. The system
then leads the user to the GPSS Menu command to
create the corresponding simulation code in the
target language GPSS/PC.

Assendl 1
Mode! Show GPSS Dow| 206701V station

=

e ——————————————————

Pros command: Ending Point
Iv.. 23 Por r.mszl nine-bredy o usu.I. ary Choose _ = o

Function: adding parts stared ot the source stock
points to a part confng fron another
source and then tranaferring the essenbled
Dert to the destination.

Rules: .« nust have one and only one source fron one of

the following:
a stetion, or
a starting point.

« must have at least one source fron one
of the following:
o denand otack patnt
an _ordered-fron-outside stock pafnt, or
a push stock point.

- rust have one and only one destination fron
ane of the following:
o push stack polnt
an_ending stock pofnt, or
o stetion.

Osmand ly
Pull Stock Polnt

©

Push Stock Point

Outalde Stock P1.

@

Sterting Polnt

Figure 8. Assembly station rules

Inspection

Station

[(Z7Z277z27227272777702224)

Station name: a string

Name of inspector: a strin

Name of repairmain: a string

Name of place for ;crag parts: a string

Inspection time distribution:normal Exponential Uniform Constant
a. Mean: a number
b. Standard deviation: a number

Repair time distribution:normal Exponential Uniform Constant
c. Mean: a number

Inspection rate (between 0 and 1): 0

Reject (repair) rate (between 0 and 1): 0

Scrap rate (between 0 and 1): 0

Done Abort

(ENEEMITE Oelote Objecte

Figure 9. Inspection station parameters

Automnatic. Manataciutmg Proaeaninmmg
Connect Icone Rafresh Screen

tiynteny |
Layout Complete Grid Maln Mems

o,

&

Assembly Station

&

Inspection Sta,

=

Task Station

@

Mg, Cell

© @

Osmand Iy
Puil Stock Polnt

Push Stock Polnt

Outalde Stock P1.

Starting Point

Q. I 1,

Figure 10. p!

ing sy

832

Starting Point of Line
Name of line: MAIN
Interarrival time distribution: Constant
Constant: 100

Final Product from Assembly Line
Part name: A
Capacity and initial inventory at the stock point:
Maxinun number of parts at stock point: 1000
Initial number of parts at stock point: 0

Supply Stock Point
Part name: C
In a pull system, parts are assumed to be ordered,
nade, and shipped by carts. Two stockpoints: supply
and demand are created.

Capacity and initial inventory at the stock point:
Current cart capacity (number of parts per cart): 4
Inftial number of carts at demand stock point: 1
Initial number of carts at supply stock point: 1

Vehicle used to move carts between stock points: wgig

Moving time distribution: Constant
Constant: 10

Ordered from outside
Part name: D
Capacity and initial inventory at the stock point:
Maxinun number of parts at stock point: 1000
Initial number of parts at stock point: 1000
Will Part D be replenished during the simulation? No

Figure 11. Partial parameter input

8.0 CONCLUSIONS

A system such as AMPS/Graphics offers a number
of advantages for improving the simulation modeling
environment. One advantage is rapid prototyping.
Once the necessary library of GPSS macros has been
written, the system permits the user to rapidly
construct a model. As a result, the AMPS /Graphics
produces executable simulation code that is syntax
error free.

. A second advantage is improved clarity of the
simulation code. The GPSS code generated by the
system is structured simulation code that is easy to
read, trace, and modify.

A third advantage of AMPS/Graphics is increased
proquctivity of the modeler. By using the system,
an increase should be realized in the lines of simu-
lation code written per hour. Several other advan-
tages are easier maintenance of the model and a
reduction in the modeler's knowledge of the simula-
tion language.

There are also several disadvantages to a system
§uch as AMPS/Graphics. First, and most importantly,
is the system is very domain specific. Therefore,
AMPS /Graphics can only model a very limited class of
problems. A related disadvantage is the model
robustness of the library of predefined macros.
Generally skilled GPSS programmers are needed to
write any new macros.

9.0 ACKNOWLEDGEMENTS

This research was funded in part by grant
NAG8-641 from the NASA Marshall Space Flight Center
and contract ADECA-UAH-9001 from the Science,
Technology, and Energy Division, Alabama Department
of Economic and Community Affairs.

10.0 REFERENCES

Balci, 0., 1986, "Requirements for Model Development
Environments," Computers and Operators
Research, Vol. 13, No. 1, pp. 53-67.

Barr, A. and E. A. Feigenbaum, 1982, The Handbook of
Artificial Intelligence, Vol. 2, W. Kaufman,
Inc., CA.

Brazier, M. K. and R. E. Shannon, 1987. "Automatic
Programming of AGVS Simulation Models,"
Proceedings 1987 Winter Simulation Conference,
Atlanta, GA, (December) pp. 703-708.

Minuteman Software, 1986. GPSS/PC Reference Manual,

Stow, MA.

Nance, R. E., and J. D. Arther, 1988. "The
Methodology Roles in the Realization of a Model
Development Environment," Proceedings 1988
Winter Simulation Conference, San Diego, CA, pp.
220-225.

Schroer, B. S., F. T. Tseng, S. X. Zhang, and J. W.
Wolfsberger, 1988. "Automatic Programming of
Manufacturing Simulation Models," Proceedings

1988 Summer Computer Simulation Conference,

Seattle (July), pp. 569-574.

AUTHORS' BIOGRAPHIES

Bernard J. Schroer is director of the Johnson
Research Center and a professor in the Department of
Industrial and Systems Engineering at the University
of Alabama in Huntsville. He has a PhD in industrial
engineering from Oklahoma State University and is a
registered professional engineer. Dr. Schroer is a
member of IIE, SME/RI, SCS, AAAI, NSPE, and Sigma Xi.

Fan T. Tseng is Assistant Professor of Management
Science at the University of Alabama in Huntsville.
He received his PhD in Operations Research from the
University of Texas at Dallas. His current research
interests include simulation, expert system design,
automation of manufacturing systems, and applied
operations research.

Shou X. Zhang 1is Associate Professor in the
Aircraft Manufacturing Engineering Department and
deputy director of the Robotics Research Center at
Northwestern Polytechnical University, Xian, Peoples
Republic of China. He currently is a visiting scho-
lar at the Johnson Research Center, University of
Alabama in Huntsville.

833

