Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

NEAR-TERM DISTRIBUTED SIMULATION
OF APPAREL MANUFACTURING

Roy P. Pargas
John C. Peck
Prashant K. Khambekar
Satish K. Dharmaraj

Department of Computer Science
Clemson University
Clemson, South Carolina 29634-1906

ABSTRACT

This paper describes the design and implementation of a
near-term simulator for apparel manufacturing. The primary
purpose of the simulator is to provide management with a tool
for production planning. In order to run as accurate a simulation
as possible, data describing the status of the apparel plant is con-
tinually collected by a real-time shop-floor control system. This
data is then used as input to the simulator. In order to increase
the speed of the simulator and reduce response time, the sim-
ulator is implemented on a multiprocessor system consisting of
seventeen T-800 INMOS Transputers with a COMPAQ Deskpro
386/25 serving as front-end processor. A user enters a plan for
the next production period and receives back more than seventy
different measures of performance of shop-floor operations. The
user may iterate this process, making modifications to the plan,
until the simulated shop-floor performance is satisfactory. The
final result is a detailed plan for the next production period.

1. INTRODUCTION

Apparel plants with scheduling problems operate on a larger
scale than manufacturing plants in many other industries. A
typical apparel plant of this type may have more than 400 direct
labor (incentive) employees with perhaps 500 machines (some
large plants have 1500+ employees and a correspondingly larger
number of machines). Both employees and machines are capable
of performing multiple operations, but only a small percentage
of the total operations are required to manufacture a particular
garment. Active on the shop-floor at any one time might be 100
or more production lots (orders) each consisting of perhaps 200
bundles of garment parts, each bundle consisting of five or more
subassemblies, each subassembly requiring one to twenty opera-
tions. Production lots are possibly of different styles, meaning
the operations and sequencing of operations are different. Bundle
subassemblies flow through the manufacturing process in paral-
lel and join (merge), as operations are completed, to produce
finished garments. The correct matching of subassemblies from
parent bundles is important since color shading variations will be
noticeable otherwise. Since employees and machines have multi-
ple, but limited, skills and capabilities, load balancing of these
resources against required work is a major problem.

The ultimate goal in production scheduling is to improve
the operation of a plant. The primary question is “How does
one know if a change in an operational plan produces a better
or worse schedule?” The performance goals of management, at
different plants at different times, may produce very different
answers to the question. At one point in time, the goal may
to be maximize the output of size 16/34 red button-down collar
shirts, whereas at another time, it may be to minimize the work-
in-process inventory level subject to keeping the average efficiency
of employees above 95%. With different goals, different, objective
functions, and different management styles, the question then
is: how does one build a single management tool to facilitate
production scheduling?

This paper describes one attempt at building such a tool: «
near-term simulator of shop-floor operations of an apparel man-
ufacturing plant. We set four objectives for the simulator:

614

(1) It should accurately predict near-term performance (“near-
term” is loosely defined as one hour to five days).

(2) It should be possible to use the simulator interactively and

iteratively. The user should be able to change values of

the simulation and observe the effects quickly. Very short

response time is therefore necessary.

~—

(3) The simulator should have wide applicability, i.e., it should
be usable in different plants with different performance
goals.

(4) The simulator should be easy to use, and the results easy
to read and comprehend.

The simulator, which is conservative and event-driven [Bryant
1977; Chandy and Misra 1979; Peacock et al. 1979] is described
in detail in the rest of this paper. Section 2 shows how one
may use a simulator as a tool for production planning. Section
3 describes the user interface, both input and output. Section
4 describes a set of performance metrics available to the user.
Section 5 gives an overview of the design and implementation of
the simulation. Section 6 discusses conclusions and future plans.

2. SIMULATION AS A PLANNING TOOL

Most simulations are beset with one major problem: the
difficulty of obtaining actual data on which the simulation can
operate. As a result, simulation designers attempt to estimate
crucial information such as the rate of arrival of goods to be
processed, processing rates of different machines, and skill levels
(efficiencies) of employees. The results predicted by the simula-
tion will, of course, be close to reality only if the estimates are
accurate. However, coming up with good estimates can often be
both difficult and frustrating.

An alternative approach is to measure, in advance, the pro-
cesses normally estimated by many simulations. For example,
in an apparel manufacturing plant, one may measure the skill
level of each operator on each different machine type. Or one
need not estimate the rate of arrival of goods into the plant if
one knows exactly what orders are arriving and at what time.
In apparel manufacturing, as in many industries, skill levels vary
widely from employee to employee. Assuming that all employ-
ees perform at some average rate or according to some statistical
distribution may seriously handicap the ability of a simulator to
make accurate predictions. One can also take note that, for ex-
ample, on a given day, a one-hour company-wide meeting will be
called to discuss employee benefits; the effect, of course, is that
production stops completely for that one hour. If it is known
that a high-priority order of goods is to be started in the morn-
ing, one may mark the lot associated with the order accordingly,
causing the lot to be sewn ahead of others already on the shop-
floor. In short, every piece of information that can be measured
is measured. Estimates of missing data are made only if there is
no way to measure the information directly.

This on-going measurement requires that a real-time shop-
floor control system be in place. Such a real-time system can
collect data through a network of intelligent devices, one at each
workstation on the shop-floor. These devices measure and record



R.P. Pargas, J.C. Peck, P.X. Khambekar, and S.K. Dharmaraj

a variety of facts, a few of which are:

(1) which bundles have arrived at which operation (this pro-
v1de)s accurate tracking of every bundle currently in pro-
cess),

(2) the number of minutes it takes for Employee A on Worksta-
tion 1 performing operation P on Bundle X (this provides
one data point which will contribute to a measure of the
skill level of this particular employee at this operation, as
(vivell z;s keeps track of the amount of work this employee has

one),

(3) the number of bundles on the floor (providing a global view
of the number and distribution, across the shop-floor, of
bundles of parts),

(4) the number of minutes a particular workstation has been
idle (giving up-to-the-minute information on utilization of
equipment).

The data are transmitted from the workstations, through the
network, and are collected on a PC for viewing or for processing
(forljxample, to produce a payroll at the end of each day or
week).

The real-time system employed in this study is one devel-
oped and marketed by Foxfire Technologies Corporation [Foxfire
Technologies Corporation 1989]. This system, currently installed
in a number of apparel manufacturing plants across the coun-
try, essentially provides detailed information on every employee,
every lot, and every workstation on the shop-floor.

3. THE USER INTERFACE

The simulator, a block diagram of which is shown in Figure
1, operates as follows. The user defines a plan for operation of
the plant in the near-term, i.e., for the next one or several days.
The starting point for the plan is the current state of the plant
as represented by data provided by the real-time system. The
user then specifies changes to the plan which he or she wishes to
implement at given times. New work may arrive at midmorning,
personnel may be reassigned to different operations at specified
times, machines may be taken out of service for preventive main-
tenance, new machines which operate at greater speeds may be
placed into (simulated) service, etc. With this new plan for op-
eration (usually a small variation of the real plan currently in
effect) the simulation begins execution. The operator can re-
quest that the plant be simulated until a specified point in time,
for a specified duration or until an interrupt key is pressed.

Figure 2 shows the instructions available to the user when
developing an input plan. The parameters associated with each
are not shown, in order to reduce clutter. The selected instruc-
tions are entered by the user and saved in a file which serves as
input to the simulator. The instructions have been grouped by

Metric
———  Dam >
) b ' Graphics
Simulator
prmemeesesssseaee 1 Front-end
—— Input
Plan

function. In the first group, Initialization, there are instructions
to start and end the simulation at specified (simulated) times.
Instruction 3 names the files produced by the real-time system.
These files provide information on the current status of the plant.
Instructions 4 and 5 inform the simulator of changes in person-
nel. For instruction 5, it is necessary to specify which workstation
the now-present employee will be assigned to; this is because the
simulator must look up this employee’s efficiency on the specified
workstation in the database provided by the real-time system.

The next group of instructions inform the simulator of events
that will occur during the day. For example, (6) a new lot will ar-
rive at a certain time, (7) a meeting is scheduled later in the day,
or (8) a regular plant-wide break will take place. Instructions
9 and 10 schedule events relating to specific employees; an em-
ployee is paid at a different rate as a result of employee training,
or an employee is moved from one workstation to another because
of anticipated bottlenecks in the workflow. Instructions 11 and
12 allow changes made to a workstation. Instruction 13 modifies
tl'lle lot priority, allowing it to move faster or slower through the
plant.

Instructions 14 through 17 provide the user with control over
the simulator itself: pausing, restarting, and stopping. Instruc-
tions 18 through 28 give a variety of information on employees,
workstations, and pay code tables. Buffers refer to the queues
of bundles of parts waiting to be sewn. Finally, instructions 29
through 31 are warning signals for which the user may request.
The user may want to be alerted when the simulator signals that
an employee has no more work, that an entire buffer (which typi-
cally provides bundles of parts to several workstations) is empty,
or that an empty buffer has just received a new set of bundles.

During the simulation, a set of approximately seventy-five
performance metrics (Section 4) are maintained. These metrics
measure different aspects of plant operations displayed as column
graphs. The user may select up to four of these for graphical dis-
play on the computer monitor (Figure 3). The user has available
the typical graphics window capabilities: opening and closing of
windows, bringing windows to the front, line scrolling up and
down, page scrolling, moving windows around the screen, and
resizing. One window is used for input and enables the user to
enter a plan, whereas the rest are output windows showing a va-
riety of information (see items 18 through 28 of Figure 2). User
input menus prompt the user for specific information whenever
needed. Finally, a help window gives information on all other
windows. All window graphics routines are implemented with
Borland’s Turbo-C graphics library calls.

As the simulation progresses, the display graphics are dy-
namically updated. If the simulation operator is dissatisfied with
the values of certain metrics, he or she may choose to restart the
simulation after making changes to the current plan. In this inter-
active and iterative manner, a plan which best suits management
can be developed. This plan can then be printed and used as a
recommendation to shop-floor supervisory personnel. We believe
that in the beginning a user will experiment with different sets

Figure 1. Block Diagram of Simulator

615



Near-Term Distributed Simulation of Apparel Manufacturing

INITIALIZATION

1. Start time

2. End time

3. Input data files (RTS files)

4, Employee present during last period
(yesterday) but absent now

5. Employee absent during last period
(yesterday) but present now

SHOP-FLOOR MANAGEMENT
6. New lot arrival
7. Schedule meeting
8. Set time of break
9. Change pay code
10. Move employee to another workstation
11. Add an operation to a workstation
12. Delete an operation of a workstation
13. Change priority of a particular lot

SIMULATOR CONTROL
14. Stop immediately
15. Resume simulation
16. Stop at a given time
17. Restart

LISTS

18. Show list of off-standard emplyees

19. Show list of on-standard emplyees

20. Show list of idle employees

21. Show list and status of all employees

22. Show list of skills and efficiencies of an
employee

23. Show list of workstations attached to a
buffer

24. Show list of empty buffers

25. Show list of idle workstations

26. Show list of assigned workstations

27. Show list of machines and operations of
a workstation

28. Show Pay Code Table

INTERRUPTS
29. Inform user that an employee is idle
30. Inform user that a buffer is empty
31. Inform user that work has arrived at a
previously empty buffer

Figure 2. Commands Available to the User

current graphuid 1
100, — 500
0
0 7 13 7 13
50 100
0
7 13 0 7 13
input line
€ITTor message

Figure 3. The Normal Graphics User Interface

of metrics, but that over time, he or she will settle on one set
which will be used thereafter.

A useful time to use the simulator is at the end of a shift, or
just before a shift starts. During this period, the user has time
to work with the simulator and plan the operations for the next
shift. However, because a snapshot of the current status of the
shop-floor is available at any time (a benefit of using a real-time
shop-floor control system), it is possible for a user to run the
simulation at virtually any time of the day using as the current
snapshot of the plant that information most recently provided
by the real-time system. The simulation gives the user a tool for
quickly predicting the performance of the shop-floor during the
remainder of the current production period.

In summary, this simulator provides the user with a tool for
developing a production scheduling plan interactively. The man-
ner one uses this tool is very similar to the manner one uses a
spreadsheet program. With a spreadsheet, the user can change
a single cell, and every other cell whose value depends upon 1t
changes automatically. The user can immediately see the “bot-
tom line” result of a single change. Similarly, the user of this sim-
ulation can change one part of the current production plan (say.
replace one employee with another on Workstation 1 at 10:00
a.m.) and be able to see, very quickly, the effect of the change on
overall production for some future period of time. The feedback
the user receives is the performance metric information selected
for viewing. If he or she is satisfied with the new results, the user

616



R.P. Pargas, J.C. Peck, P.K. Khambekar, and S.K. Dharmaraj

may opt to keep the employee change in the plan. Otherwise,
the user may delete the change and may continue trying other
modifications.

4. PERFORMANCE METRICS

One design decision was to provide a wide variety of perfor-
mance metrics for the user to select and view. The reason for
this is the belief that different managers will want to optimize
different metrics. Some may want to maximize workstation uti-
lization. Others may try to minimize amount of work-in-process
inventory. Still others prefer minimizing employee idle time. As
a result, the best approach is to provide all of the metrics and let
the user select those which he or she wishes to observe and im-
prove. We expect that after some experience with the simulation
has been gained, the user will settle on a subset of the metrics
thereafter. As an aside, note that some metrics conflict and thus
cannot be optimized simultaneously. For example, in order to
keep employees working on production, it may be necessary to
increase the amount of work-in-process.

The metrics used in this study were derived largely from con-
cepts developed for job-shop scheduling, as described by French
[1982] and Rinnooy Kan [1976]. Metrics are provided at four dif-
ferent levels: lot (a single production order?, style, department,
and plant. Seven classes of metrics are available to the user:

(1) Waiting time. Bundles of parts generally wait in queues be-
fore they are sewn. A manager may be interested in know-
ing whether a particular lot (composed of several bundles)
is being inordinately delayed or whether employees should
be moved to operations where excessive work has accumu-
lated.

—_
™o
~

Cost/Value. As a lot moves through the plant, it accu-
mulates value. Each sewing operation adds labor value.
Machine breakdown, lack of work, employee training, and
the like, add excess cost to plant operation but add no value
to the product.

(3) Flow time. This measures the amount of time a lot is on
the shop-floor. One may compute the percentage of the
time jobs are waiting in queues, or the average amount of
dollar-value per minute each lot accrues while on the shop-
floor.

(4) Lateness. Being able to estimate by how many days a lot
will be late (or early) allows a user to plan ahead. For
example, he may decide to give a higher priority to a lot
to allow it to move along through the plant. On the other
hand, a lot that will be completed too early may require
unwanted inventory handling. The user may decide to hold
processing on an early lot for a day or two.

(5) Labor utilization. Significant labor underutilization indi-
cates several possible problems: workload imbalance, sug-
gesting that the idle employees be trained to perform other
operations; too little work-in- process, suggesting that more
new orders be started; or simply too many employees for
the current work available, suggesting that fewer employees
be scheduled for the next several days.

(6) Production. This provides the user with a variety of mea-

sures for the amount of work produced and the rate at

which it is produced.

~

(7) Efficiency. This provides a comparison of the actual output
produced by the plant and the maximum possible output
of the plant.

For a detailed description of the complete set of metrics used, the
interested reader is referred to a paper by Peck et al. [1990].

5. DISTRIBUTED SIMULATION

A major concern in this simulation is simulation response
time. A simulation of a large apparel manufacturing plant with
500 or more workstations 1s anticipated to require much more

617

computing power than is available on a PC, even on the latest
models such as the IBM PS/2 family, some of which use the very
fast Intel 80386/387 processors. For this reason, we decided to
implement the simulation on a distributed memory multiproces-
sor system.

The multiprocessor system used was built by Computer Sys-
tem Architects of Provo, Utah. It consists of seventeen INMOS
T-800 Transputers, each with two megabytes of memory. The
processor integrates a 32-bit processor, a 64-bit floating point
unit, and 4 Kbytes of static RAM. At peak speeds, each processor
provides 10 MIPS and 1.5 Mflops. Each has four communication
ports which can be used to interconnect with other processors.
Sixteen processors, therefore, can be linked to form a linear ar-
ray, a ring, a mesh, a 2-D torus, or a 4-D hypercube. One of
the Transputers is called the root processor and serves as a liai-
son between the front-end PC and the sixteen other Transputers,
called nodes. The front-end processor, which accepts input from
and provides graphics output to the user, is a standard PC, a
COMPAQ Deskpro 386/25, with a 110 Mbyte hard disk.

A major design decision was to break up the major functions
of the simulation among the processors available. The primary
functions are input and output, execution of the simulation it-
self, sending of user input to the simulation, and collection and
processing of performance metric data (Figure 1). A natural as-
signment of function to processor is to assign all input/output
function to the front-end PC, the simulation to the Transputer
nodes, and to let the root Transputer serve as a liaison, collecting
metric data and broadcasting user input to the nodes.

The responsibilities of the front-end computer are to provide
the interface allowing the user to enter and modify plans, and
to display all metric information in graphical format. All shop-
floor status information is stored in a database which resides on
the PC hard disk. The root Transputer collects and processes
performance metric data before sending the data to the front-
end for display. As each node steps through the simulation, it

accumulates performance metric information and, at predefined
time intervals, sends the data to the root Transputer. The root
collects the data, performs a few simple computations (such as
computation of means and variances), and when the data for the
time interval is complete, sends a packet of metric information
to the front-end PC for graphic display.

This division by function is quite clean. The user sees only
the front-end computer and does not know about the existence
of the root or node Transputers. The program executing on the
front-end is unaware of the number of processors running the
simulation. It is only aware of simulator commands and data it
sends down the communication link to the root Transputer, and
metric and other information received from the root. In the same
way, the root program is independent of the number of Trans-
puter nodes and the nodes depend on the root only for startup
information. The simulation may run on one node Transputer,
or as many as the user can afford. For smaller problems, one
Transputer may suffice. For larger problems with 500 or more
workstations, the user may decide whether the increased speed
of execution justifies the cost of additional processors. The de-
sign is flexible enough, however, to accommodate any number of
node Transputers.

The Transputer nodes execute an event-driven simulation.
Because physical memory is limited on each node Transputer
(two megabytes per processor) and virtual memory is not pro-
vided by the node operating system, we have opted for a con-
servative simulation, rather than the optimistic Time Warp ap-
proach proposed by Jefferson [1985]. The most common event is
completion of a sewing operation on a subassembly. Other events
include lot events (arrival of a lot, change in a lot’s priority), em-
ployee events (employee is assigned to another workstation, em-
ployee stops work to attend a meeting), and workstation events
(a workstation is reconfigured for a different sewing operation).

Each sewing operation has a unique buffer which holds a
queue of subassemblies waiting to be sewn. One or more work-
stations, configured to perform the operation, pick subassemblies
from the buffer in a first-come, first-served order. A processor,
one of the node Transputers, simulates the activity of one or
more buffers. For correct first-come, first-served simulation, the
workstations must coordinate. This is most easily achieved by re-



Near-Term Distributed Simulation of Apparel Manufacturing

quiring that all workstations that pick from a common.buﬂ'er be
simulated in a single processor. Each processor has a single pro-
cess, a single event queue, and a single logical clock. The event
queue is stored in ascending order and, as a result all events
within (and resultant messages from) a processor are in logi-
cal time sequence. Each node processor goes through the event
queue, generating new events for itself and other processors, until
the end of the simulation period.

Subassemblies may flow from a buffer in one processor to a
buffer in a different processor. Buffers in a processor which can
receive subassemblies from another processor are called Front
Buffers. For correct conservative simulation, a processor can-
not proceed if there is a possibility of receiving a subassembly
message from a predecessor processor at an earlier clock time.

This means that if correct time synchronized simulation is to be
guaranteed, all Front Buffers of a processor must be non-empty
(other buffers may be empty) before a processor advances its
simulation clock. One way to handle this is for predecessor pro-
cessors to send NULL messages to successor processors. However,
source-driven NULL messages are likely to flood the system, as
reported by Fujimoto [1988]. An alternative approach is: if the
Front Buffer of a processor becomes empty, the processor sends
out appointment-request messages to its predecessors. The pre-
decessors then make an estimate based on their current statuses
and send appointments to the requesting processor, thereby en-
abling it to proceed. This demand-driven method, described by
Khambekar and Dharmaraj [1990], is an adaptation of the ap-
pointment approach presented by Nicol and Reynolds [1984] and
Nicol [1988]. In terms of the design space outlined by Reynolds
[1982], this method is accurate, non-aggressive, has no risk, and
employs knowledge acquisition and knowledge embedding.

Subassemblies have user-assigned priorities and are arranged
in the buffer queues according to their priorities and arrival times.
Occasionally, two or more subassemblies must merge into one.
For example, fronts and backs must merge to form a complete
shirt. Hence, the mere arrival of a subassembly in a buffer does
not guarantee that it is ready for processing; it may have to wait
for its companion subassembly to arrive at the same buffer. In-
formation on the flow of companion subassemblies is extracted
and stored in compressed form prior to the start of the simu-
lation. A simulation node ready to select a subassembly must
scan the buffer queue, skipping over all unmatched companion
subassemblies.

The service time for an operation in a subassembly is calcu-
lated from the pre-engineered Standard Allowed Minutes (SAMS%
and the efficiencies of the employees. For example, if the SAM
value of an operation is 5 minutes and an employee has an effi-
ciency of 110% (better than average), then the service time for
this employee working on this operation is 5/1.1 = 4.55 minutes.
The completion time of the simulated operation is computed and
an event is added to the event queue.

Subassemblies usually flow from one operation to another;
however, sometimes there are alternate paths available for the
subassembly. For example, instead of performing two consecu-
tive operations on two slow older machines, it may be possible
to combine both operations on one fast, newer machine. When
alternate paths are available, a subassembly is sent along the
path with the smallest wait-queue. This implies that the path of
the subassembly must be determined at runtime, i.e., determin-
ing the successor buffer (which buffer to send the subassembly to
next) is determined on-the-fly by examining the wait-queues of
all the successor buffers. If the selected successor buffer happens
to be in the same processor, then the subassembly is sent directly
to the buffer; otherwise, additional table look-up is necessary to
determine the successor processor, and a subassembly message is
sent to that processor.

When an operation completion event occurs, the processor
calculates all contributions to the collection of metrics. Results

are stored in local memory. After a predetermined interval of
simulated time, the processor sends the accumulated metrics to
the root Transputer. The root accumulates these in its own global
set of metrics. When all processors have sent metric values for a
single time interval, the root computes a set of secondary metrics
(means, variances, plant-wide totals) and sends the entire list of
metric information to the host PC for immediate display.

618

6. SUMMARY

This paper describes a near-term simulator for use in schedul-
ing production in an apparel manufacturing plant. .

In the Introduction, we set four objectives for the simulator:
accuracy of simulation, interactive and iterative use, wide appli-
cability and ease of use. We feel these goals are being met. This
simulation is accurate because little information is estimated.
Current and historical data obtained from a real-time control
system are used, rather than statistical distributions to estimate
such things as rate of arrival of goods and employee skill level.
Interactive and iterative use is due, in large part, to the division
of tasks among multiple processors. The very short response time
which results encourages the user to sit before the monitor and
work with the simulator. Wide applicability is achieved because
of the large number of performance metrics made available to the
user. The user selects as many of the metrics as he or she feels
are important in planning shop-floor operations. Finally, ease of
use is a result of the graphics windowing system available; the
user views many performance metrics changing over time.

We believe that this simulation will be a valuable tool for a
manager of shop-floor operations.

ACKNOWLEDGEMENT

This research was sponsored in part by the Defense Logistics
Agency under Contract No. DLA900-87-D-0017 Task No. 0003
through the Clemson Apparel Research Center.

REFERENCES

Bryant, R.E. (1977), “Simulation of Packet Communication Ar-
chitecture Systems,” Technical Report MIT/LCS/TR-188,
MIT, Cambridge, MA.

Chandy, K.M. and J. Misra (1979), “Distributed Simulation: A
Case Study in Design and Verification of Distributed Pro-
grams.” IEEE Transactions on Software Engineering SE-5,
5, 440-452.

Foxfire Technologies Corporation (1989), Real-time Shop-Floor
Control System User Manual, Marietta, GA.

French, S. (1982), Sequencing and Scheduling: An Introduction
to the Mathematics of the Job-Shop, Ellis Norwood, London.

Fujimoto, R.M. (1988), “Performance Measurements of Distrib-
uted Simulation Strategies,” In Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, San Diego, CA,

14-20.

Jefferson, D.R. (1985). “Virtual Time,” ACM Transactions on
Programming Languages and Systems 7, 3, 404-425.

Khambekar, P.K. and S.K. Dharmaraj (1990), “Approaches to
Solving Synchronization Problems in Parallel Simulation of
an Apparel Plant,” In Proceedings of the 1990 ACM South-
east Regional Conference, C.M. Pancake and R.M. Geist,
Eds. ACM, Greenville, SC, 274-281.

Nicol, D.M. and P.F. Reynolds (1984), “Problem Oriented Pro-
tocol Design,” In Proceedings of the 1984 Winter Simulation
Conference, S. Sheppard, U. Pooch, and D. Pegden, Eds.
IEEE, Dallas, TX, 471-476.

Nicol, D.M. (1988), “Parallel Discrete-Event Simulation of FCFS
Stochastic Queuing Networks,” In Proceedings of the 1988
ACM SIGPLAN PPEALS, Yale University, New Haven, CT,

124-137..
Peacock, J.K., J. W. Wong, E.G. Manning (1979), “Distributed

Simulation Using a Network of Processors.” Computer Net-
works 3, 1, 44-56.

Peck, J.C., R.P. Pargas, P.K. Khambekar, and S.K. Dharmara]
(1990), “Shop-Floor Performance Metrics for the Apparel In-
dustry.” Submitted to the International Journal of Clothing
Science and Technology.

Reynolds, P.F. (1982), “A Shared Resource Algorithm for Dis-
tributed Simulation.” In Proceedings of the Ninth Annual In-
ternational Computer Architecture Conference, Austin, Tex-
as, 259-266.

Rinnooy Kan, A.H. (1976), Machine Scheduling Problems: Class-
ification, Complezity and Computations, Martinus Nijhoff,
The Hague.



