Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

THE COMMAND AND CONTROL COMMUNICATIONS AND
INFORMATION NETWORK ANALYSIS TOOL (C3INAT)

John P. Mullen
Jason Rupe
Srinagesh Gavirneni
Way Kuo

IMSE Department
209 Engineering Annex
Iowa State University
Ames, Towa 50011

ABSTRACT

The development of a large scale communications system is
complicated by the great scope of design considerations. The
Command and Control Communications and Informatin Network
Analysis Tool (C3INAT) simplifies this problem by use of a strat-
ified model which separates Command and Control C? and com-
munication sub-models which may be developed independently.
The C3INAT then integrates the two sub-models so that a com-
munication system may be evaluated in light of its effect on C2.
C3INAT also provides efficient interfaces to existing data bases
and the modular General Simulation System (GSS). Its output is
compatible with most data base and statistical analysis packages.

1. INTRODUCTION

Telecommunications and computer storage and retrieval of
information can greatly enhance the capability of Command and
Control (C?). However, the task of designing modern Communi-
cations and Information Networks (CIN) is very complex. This
complexity is partially due to the large scope of the problem,
encompassing many areas of expertise [Athans 1987; Bohannan
1985; Bleistein et al. 1985; Farrel et al. 1986; Georgiou and
Lammers 1985; King and Martin 1985; Kirshna and Shin 1987;
Kroening 1986; Wohl et al. 1984]

The Command and Control Communications and Informa-
tion Network Analysis Tool (C3INAT) is a collection of software
that facilitates the task of comparing alternative CIN designs. It
is used to determine Measures of Performance (MOP) and Mea-
sures of Effectiveness (MOE) through stochastic simulation. Its
distinguishing features are

e the use of established data and knowledge bases
e the separation of the C? and CIN functions.

The identification and use of established data bases including
the Communications Data Base (CDB) capture the vast body
of knowledge available on C? and on CIN. [Johnson et al. 1988]
discusses these features of C3INAT. The separation of C? from
CIN which simplifies modeling and makes analysis more mean-

ingful and efficient, has not been discussed previously and is the
main focus of this paper.

2. THE TWO-LAYER MODEL

Figure 1 depicts the basic model which contains aspects of
the Military Command and Control Evaluation Structure (MCES)
[Sweet et al. 1986] and is a logical extension of the OSI layered
network model [Schwartz 1987]. There are, however, only two
major layers and one interface. This condition neither precludes
nor requires the use of layers in the C2 or CIN sub-models. An-
alysts are thus free to model the major divisions as they see fit.

Interface

\
\
\

\
(8

CIN Sub-Model

Figure 1. The Two Layer Model

The C? sub-model is essentially a description of C? commu-
nications and information requirements among a set of partic-
ipants. The participants are usually people, but may also be
information storage devices. Each Needline is a specific require-
ment between two or more participants that is conditional on the
current activities and the state of the environment (This differs
from the usual definition of needline, which specifies requirements
among classes of participants). At this time, almost all needline
information is derived from the CDB. For example, CDB needline
type U504430 specifies that a Combat Support Aviation Com-
pany Commander will need to communicate with his operations
officer about four times a day in the voice mode with a message
length of 1000 bytes. A needline would be an instance involving
a particular CSA.

Each attempt to communicate or gain information is termed
a call attempt. It is initiated in the C? sub-model and, if the
scheduled originator is idle, transformed into a request from the
CIN model. The final outcome of the attempt is determined first
by the response of the CIN model and then by the C? sub-model’s
response to the CIN result.

For example, suppose a needline specifies that Party A must
communicate with Party C. The CIN sub-model attempts to find
anath from instrument 2 to instrument 8. If one is found, the
C?* sub-model then checks the status of Party C. If that party is
idle, the CIN’s resources are assigned to the call and the call is
connected.

J.P. Mullen, J.W. Rupe, S. Gavirneni, and W. Kuo

The details of the CIN’s action are not known to the C?
sub-model, and the merit of the CIN is measured in how well or
poorly it satisfies the C? requirements. In the earlier example,
the CIN sub-model may connect via 2-3-6-7-8 or 2-3-7-8. The
C? sub-model will not know which was the case. The only thing
of concern is whether of not the call is completed. No other
measures are used to determine MOEs, although other MOPs
may be collected from the simulation in order to determine weak
points of the CIN. Note that this call attempt could have been
thwarted if no path could be found, or if either party were busy.
The first case indicates a weakness in the CIN, but the second
indicates a weakness in the overall communication plan, or a C?
problem.

The CIN is modeled in the conventional manner as a set of
nodes interconmected by links. This sub-model is usually built
by telecommunications and computer experts to accurately re-
flect the performance of the CIN to be evaluated. There are no
significant restrictions on the construction of this model.

The two sub-models are interconnected by the interface. The
interface may be as simple as a “telephone directory,” listing one
instrument for each participant, or as complex as a pick order
for instruments and a pecking order for participants who share
instruments.

This design permits C? experts to develop the C? sub-model
and CIN experts to model the CIN with little interference and
interaction. It also gives the analyst great flexibility because it
permits any C? sub-model to be used with any CIN sub-model
and any CIN sub-model to be used with any C? sub-model.

3. AN OVERVIEW OF C3INAT

The C3INAT, described fully in [Kuo et al. 1990], is summa-
rized briefly in this section to provide the necessary context for
the discussion of the simulation model. As depicted in Figure 2,
the C3INAT consists of four major subsystems

- SRC Code

@ Book
Reference
Preparation

Troop Needline C2/CIN
List List Interface
Call Script

Generator

Figure 2. The C3INAT

889

o reference preparation
o call script generation
¢ simulation

o stochastic analysis.

Each of these is discussed very brielly below.

3.1 Reference Preparation

. The main purpose of the reference preparation phase is to
identify necessary information and put it into a standard form
suitable for use in subsequent subsystems. This entails

. }fientifying the primary participants and producing a troop
1st

¢ producing the needline list, a working extract of the CDB

o synthesizing one or more event scripts on the basis of the
contents of the scenario and anticipated analysis

o developing an interface to anticipated CIN models.

Because input data formats vary greatly, this phase is the most
open-ended and least structured. Its success depends in great
measure on the expertise of the C? specialists who perform this
step.

One component of C3INAT used in this phase is a fast ex-
traction program called CDBXTRCT. This program may be used
to generate working extracts of the CDB, once each individual
in the troop list has been identified by SRC code. These work-
ing extracts are then converted to dBASE III format for further
processing.

Because of the unstructured nature of this phase, the most
helpful tools are written procedures, the SRC codebook in dBASE
format and the modeler’s expertise.

The interface file details which participant in the troop list
has access to which instrument in the CIN. It may be quite de-
pendent on the CIN to be modeled, but is usually just a list of
“telephone numbers” that can be assigned to specific instruments
later.

3.2 Call Script Generation

Stochastic simulation requires the use of several indepen-
dent replicates to accurately characterize the CIN’s response.
In addition, such inputs should be exactly repeatable in order
to reduce between-treatment variance in contrasts of different
CINs [Ripley 1987]. The Call Script Generator can produce ran-
domly generated call scripts to satisfy both of these needs.

Event Scripts for steady state experiments are static, but
those for terminating systems are not. This subsystem is de-
signed so that one may generate either many random call scripts
from each event script for terminating experiments or a few long
call script steady state experiments. Thus a robust input to the
simulation model can be assured in either case.

3.3 Simulation

Simulation models were developed in the General Simulation
System (GSS), produced by Prediction Systems, Inc. in Man-
asquan, New Jersey. The Call and Event Scripts, which are used
to model the C? requirements in the simulation model, are auto-
matically read in. The C? sub-model is automatically interfaced
to independently-generated CIN models during the C3INAT sim-
ulation. This allows the efficient testing and comparison of CIN
models without significant rewriting or recompiling of the simu-
lation model.

Because differing subprocesses may be exercised to greatly
differing degrees, post sinmulation analysis is used. The output of
the simulation subsystem is a record of each call attempt and its

The Command and Control Communications and Information Network Analysis Tool (C3INAT)

disposition. This permits the analyst maximum flexibility in the
analysis phase since the state of network at any particular time
can be reconstructed from this record.

3.4 Analysis

The methods used in C3INAT include post-simulation trun-
cation and batching. The output record is designed to facilitate
isolation of key items from the rest of the record by using such
data base software as dBASE III or FoxBase. In addition, the
input is compatible with numerous data analysis packages, such
as SYSTAT, SAS, and MINITAB.

4. THE SIMULATION MODEL

This simulation model of communication systems is divided
into three main parts. They are C? sub-model, CIN sub-model,
and C2-CIN interface (see Figure 3). This design has been devel-
oped to make it easier to simulate various configurations with as
few changes as possible in the software. In most cases, changes
in the CIN sub-model do not affect the C? sub-model at all.

Independent environments exist for C* and CIN modeling.
This separation allows the communication experts and C? experts
to work independently of each other. It also allows much freedom
in the pairing of C? and CIN sub-models.

X Attempt
ITPL'S‘W_—& [Records
C25ub-Model |
. Summary
Call Script Statistics

Directory Interface

]_

rBaseIine

f CIN Sub-Models
| -

L

Figure 3. Simulation Overview

4.1 Overview

The C? sub-model addresses various communication needs
of the parties and their reactions to various situations. It is
based on the theory that the communicating parties react to
various communication delays or problems in a manner that is
independent of the CIN sub-model used. All communications
originate with a human being and terminate with another human
being. The current states of the origin and destination parties
help determine the results whether at the start of a call attempt
or in reaction to CIN response.

That is, the party’s reaction to a busy signal is independent
of whether it was caused by a lack of a trunk, poor propaga-
tion conditions or the destination’s instrument being off-hook.
Therefore, changes of state in the C? sub-model are enacted in
response to information that would normally be available to the
party rather than the exact CIN response.

The CIN sub-model describes the arrangement of the in-
struments in the communications and information network. This
sub-model includes information regarding the various devices,
links, and trunks being used and their availability at any par-
ticular moment. This part of the model determines whether the

890

required device or network trunk is available and whether the
particular call attempt connects. Thus this sub-model is mainly
involved in the middle part of a call attempt.

The baseline model is an idealistic CIN sub-model that has
unlimited resources. Its primary function is to establish a base-
line response for a given call script. This special CIN sub-model
is also used to test the C? sub-model.

The Interface forms the connection between the C? sub-
model and the CIN sub-model. It passes call requests from the
C2 sub-model to the CIN sub-model and passes the CIN responses
back to the C2 model.

4.2 Order of Events during Simulation

A simulation session consists of one or more simulation runs
that form an experiment. Each run’s input is a distinct random
Call Script based upon a common Event Script and its output is
a replicate of the experiment. The operator specifies a single call
script for each session, but may specify a different CIN or CIN
option for each run within the session. There are four phases to
each simulation session.

e initialization for the session

o initialization for each run

e simulation for each run

e summary statistics for each run.

During the session initialization, the simulation reads in the
trooplist file which contains information about the communicat-
ing parties, and the interface file which contains the data regard-
ing which parties have access to which device. In initialization
phase for each run, all the queues are made empty, all the parties,
trunks, and devices are made idle and the statistical variables are
initialized. Once the system has been initialized, the operator
indicates which CIN sub-model to use for that run. Then the
interface reads in the data regarding that sub-model being used.
It is possible to have a large number of CIN sub-models and use
a different one for each run.

As the simulation proceeds, the calls are read in one by one
from the call script and are placed in the pending calls list. Each
call attempt entry contains information regarding a call mainly
divided into the following three parts

o call sequence number
e call data

o call label

The call sequence number is an ID to the call and can be used
to access information regarding that call. It is assigned during
the call’s entry into the model. The call data includes origin
and destination party indices, call length and priority, maximum
number of retries, mean time between retries, initiation time and
the deadline time. The label is an eight-character field that can
be used during simulation or analysis to group calls.

While a call is pending, each attempt is recorded in the at-
tempt record file. This file, generated during the simulation run,
documents all system state changes and can be used with a sta-
tistical package to calculate required statistics.

A few summary statistics such as average calls in the model,
average retries per call, and number of attempts blocked by the
CIN sub-model are calculated at the end of each simulation run
and written into a separate file. These are rough estimates of the
system response which have been used mainly to test the model,
but may be also used for preliminary analysis.

4.3 The C? Sub-model

The command and control sub-model closely emulates hu-
man behavior as a call is handled. Call status codes representing
intermediate and final call states each unique situation. Cor-
rect transition requires only knowledge of the C? and call current

J.P. Mullen, J.W. Rupe, S. Gavirneni, and W. Kuo

. O !
| I
Attempt | | [1a

i PROCESSOR ‘N_ATTEMPT_CONNECT] |
| |1 {l Preempt :
| New Calls Response I | | | l
: [NeTwork mopeL | |

|
[NmALizE	I		
CALLS]I	
	I CIN_TERMINATE_ CALL]		
Ended Ended I I Response — — l			
I Attempt Attempt I } I I			
{ IRECORD smnsncsl—- [:		
I I			
Coswmosel		cocmmertoce	

Figure 4. The Simulation Model

states because the states are Markovian. So although, a call’s
state may change many times in the process of handling a call,
these codes allow consistent handling.

Figure 4 illustrates the inner working of the C? sub-model.
INITIALIZE CALLS reads in each call from the call script at its
simulated first attempt time and places it in the pending calls list,
notifies the C2 CALL PROCESSOR which immediately attempts
the call. The call is then transferred through the interface to the
CIN sub-model. At this point, a number of things may happen
depending on the status of the network. The CIN sub-model
reports the result of the attempt back through the interface to the
C2 CALL PROCESSOR. The C2 CALL PROCESSOR interprets
the status codes returned from the network and determines the
way a party or the network reacted to the call. The C2 CALL
-PROCESSOR reacts in a similar manner to subsequent attempts
of calls that are not completed on the first try. As each attempt
is resolved, the result of the attempt is recorded by RECORD
STATISTICS.

Each possible intermediate or final status is represented by
a unique call state. As a call is processed through the model,
the pseudo-human reaction and the network response may cause
the call’s state to change often. Some states are terminating, but
others may occur many times before reaching an ending condi-
tion. Once a call reaches a terminating state, it can undergo no
further change, so it is dropped from the pending call list.

Figure 5 shows the possible states of a call at the C? level.
The call states are nearly self-explanatory, but the reasons that a
call changes state are not. Therefore how a call enters and leaves
each state is explained below.

4.4 Terminal Classifications

A call has three possible final outcomes. Once a call reaches
one of these states, it can have no further changes of state and
is therefore removed from the ordered list of pending calls and is
no longer retained in the model.

4.4.1 “Complete”

A call becomes a complete call when a connected call is fin-
ished, the parties hang up, and the network is cleared of the call.
This triggers a search of the waiting call lists for the involved
parties (see section 4.5.3).

4.4.2 “Deadline Delete”

If a call remains incomplete beyond a certain time its infor-
mation becomes worthless. Such a deadline is specified for each

891

Attempt

Connect

-
IDeadIn_Del] F/Ix_Rtrﬂ OP__Pre I

Figure 5. C? States and Possible Changes

Complete

call on the basis of the Perishability field in the CDB. If the call
is not completed by that deadline, it is classified as a deadline
delete.

4.4.3 “Mazimum Attempts”

An originator would not retry a call indefinitely, but would
give up after a number of attempts. If the number of attempts
exceeds the maximum specified for call, then an attempt is not
scheduled, and the call is classified as terminated because of max-
imum attempts.

4.5 Intermediate Classifications

A call can pass through many intermediate states before
reaching a final classification. Each of these states could apply to
a given call at several separate times while it is being processed
through the model.

4.5.1 “New”

This status represents an originating party’s first attempt at
this call. Each call is read in from the call script at its simulated
initial attempt time, is classified as a new call, and immediately
reclassified as an attempt.

4.5.2 “Attempt”

An attempt is defined to be the initialization of a sequence
of events by a participant wishing to communicate with a given
party. In the C? sub-model, a call is classified as an attempt
when any C? sub-process seeks to connect a call. An attempt
status can arise from a new call, a waiting call, or retry call.

The Command and Control Communications and Information Network Analysis Tool (C3INAT)

In an attempt, the origin is checked first. If the origin party
is busy, the call is reclassified as a waiting call. If the origin
party is idle, the CIN is polled. If the CIN sub-model reports
that a connection is possible, the call’s destination is checked. In
the event that the destination is idle, the call is reclassified as
a connect. If the destination is busy then the call is classified a
retry.

4.5.3 “Waiting”

A waiting call is a call which is blocked by a source visible to
the originator. Thus, the originating party will know when the
obstacle dissolves. The C? sub-model classifies a call as waiting
either because of a busy origin party or a busy origin instrument.
Either the party or instrument can be busy because currently
an equal, or higher-priority call is going through or either can
become busy if the call gets preempted by a more important call.

Each time a call is classified as a waiting call, the number of
attempts is compared to the number allowed for that call. If this
is less than the maximum allowed, the call is then put on a list
of waiting calls for the originator. If not, the call’s state becomes
“maximum attempts”.

The list of waiting calls is logically a separate list for each
party ordered first-come, first-serve according to priorities. When
a call is completed and the parties become idle, the top call is
pulled from this ordered list of waiting calls, and this call is
reclassified as an attempt. If a call’s deadline is reached while
it is on this list, it is removed from the waiting calls list and
reclassified a deadline delete termination.

4.5.4 “Retry”

A party may attempt to make a call but be blocked by some
impediment not visible to the originating party. In that case, the
originator will make another attempt for that call after a random
amount of time. In the C? sub-model, a call is classified as a retry
if an idle party can obtain a device to make the call, but cannot,
for some reason, connect. For example, a call could be blocked
by the lack of a connect path in the CIN or a busy destination
device. It is also possible that a call that gets preempted or
interrupted at the CIN level can become a retry.

Assuming the call has not exceeded its allowed number of
attempts, the call goes on the retry list, and its next attempt is
scheduled to occur in the future. If, however, its attempt limit is
reached, the call is classified a maximum attempts termination.

A retry call becomes an attempt again when the simula-
tion clock reaches call’s scheduled retry time. Of course, a retry
call can also be terminated as a deadline delete if its deadline is
reached before its next retry time (see section 4.5.7).

4.5.5 “Connect”

A connected call is one in which the origin and destination
are currently conversing with one another. In the C? sub-model,
a call is connected if a path is found through the network and
the destination party is idle. The CIN sub-model is polled for a
path, and the destination party is checked on the CZ side. Only
a call with an attempt status can become a connected call.

A connected call can have any of a number of things happen
toit. If it stays connected long enough for all of its information to
be transferred, it becomes a complete call. If a CIN interruption
occurs, it can become either a waiting call or a retry call. It
is also possible that a higher priority call can be attempted for
either the destination or origin, in which case this connected call
would become a C? preempt.

4.5.6 “CIN Interruptions”

A connected call may be interrupted because of some event in
the CIN sub-model. Situations that cause an interruption include
network failure and preemption of network facilities by a higher
priority call. These interruptions can occur only to a call that is
either attempting to find a path through the CIN sub-model or
that is connected.

892

A call interrupted by the CIN will become a retry call unless
the call origin’s instrument or origin party becomes busy, in which
case the call becomes a waiting call.

4.5.7 “C* Preempt”

A party to a conversation may realize that he or she must
interrupt the current call to make a more important one. When
a call with a high priority is attempted and involves a party busy
with a lower priority call in connect status, the connected call
becomes a C? preempt. Therefore, only a connected call can be
preempted on the C? level.

The C? sub-model waits for the CIN sub-model to free the
resources allocated to the call and then frees the parties to that
connected call and reclassifies the disconnected call. If the call
was preempted at destination, it’s originator does not know when
the destination will be free again. Thus, if the attempt limit is
not exceeded, the preempted call will be classified as a retry.

If the call was preempted at the origin, the originating party
will know when the preempted call can be attempted again.
Thus, if the deadline has not been exceeded, the call will be
classified as a waiting call. Of course, if the maximum attempts
are exceeded or deadline for the preempted call is exceeded, the
call is terminated with the appropriate classification.

4.6 The CIN Sub-Model

The main purpose of the ISU team is to develop the C2
sub-model and the necessary supportive software. However, a
requisite modelin% task is a simplistic CIN sub-model, TN1, to
assure that this C® sub-model works properly. This example CIN
presents typical responses to the higher-level model. In particu-
lar, it

¢ possesses limited network resources

® produces random delays before confirming connections
¢ preempts network resources, if necessary

¢ generates random failures.

Thus, it also serves as an example of a compatible model to
communications and computer experts.

As shown in Figure 6, the TN1 sub-model consists of two
clusters of terminal equipment interconnected by a number of
trunks. A terminal device is assigned to Cluster 1 if its phone
number is odd and to Cluster 2 if it is even. The operator may
select the number of trunk lines at run time as well as whether
or not to enable network preempts and random failures.

The code for the TN1 sub-model, which can be found in [Kuo
et al. 1990], contains many examples of ways to implement such
models, but the basic rules are these:

Cluster 1

Cluster 2

Figure 6. The TN1 Network Sub-model

J.P. Mullen, J.W. Rupe, S. Gavirneni, and W. Kuo

o CIN sub-model identifiers may begin with anything except
C2_, which is reserved for the C? sub-model.

o The C? sub-model communicates with the CIN sub-model
only through the process C2_POLL_CIN.

o The CIN sub-model communicates with the C? sub-model
only through the process C2_CIN_RESPOND.

o No shared (common) resources of the C? sub-model are
shared by any of the CIN sub-models.

The situation implied by the last three rules is illustrated in Fig-
ure 4. Note that if a new CIN model is added, the CIN modeler
will have to modify C2_POLL_CIN, but not C2_CIN_RESPOND.

4.7 The C?>-CIN Interface

The C2-CIN interface is the sole interconnection between the
C? and CIN sub-models. In addition, it acts as a filter, screen-
ing out responses from the CIN model that are inappropriate
and therefore reducing the chance of a bug in a CIN sub-model
causing subsequent difficulties in the C? sub-model. Finally, the
interface contains the Baseline Reference sub-model.

As illustrated in Figure 4, all outputs to the CIN sub-model
pass through C2_POLL_CIN. This process selects the current CIN
sub-model and performs the necessary actions for that model.
In this way, several CIN sub-models may be exercised during a
single session. If a new CIN sub-model is added or significantly
modified, this process may have to be modified.

All responses from the CIN are funneled through a process
called C2_CIN_RESPOND. This module is very seldom changed, for
its output must be compatible with the C? sub-model. To avoid
sharing resources, the call index and status are both represented
as passed indices. C2_CIN_RESPOND checks the CIN status codes,
and if valid, takes the proper action in the C? sub-model. If the
code is not valid, it generates an appropriate warning and ignores
the input.

The Baseline Reference sub-model is essentially a perfect
CIN. It behaves as if it has unlimited resources, performs all
actions instantaneously, is 100% reliable, and completes all voice
transmissions at the rate of 30 characters per second. This model
provides a point of reference for a reasonable assessment of any
CIN sub-model’s performance.

For example, if a test reports a completion ratio of 70%, the
CIN might not appear to be too good. But, if the completion ra-
tio under the Baseline Reference sub-model is 80%, then a better
measure of that CIN’s performance is

Rern
Rp
NG

.8
= 87.5%

R =

where R, is the Relative Completion Ratio, Rcyny is the CIN
Completion Ratio, and Rp is the baseline Reference Completion
Ratio.

5. STATISTICAL ANALYSIS

Statistical analysis is necessary to extract important infor-
mation from the simulation results. As mentioned earlier, the
output from this simulation is mainly divided into two parts.
One is the session record containing the summary statistics. The
other is the call attempt log containing a record of each attempt.

5.1 Session Record

The session record indicates the files used for the run as
well as the time and date the run was executed. It also contains
some summary statistics calculated during the simulation. These
summary statistics include event-dependent statistics, such as

893

number of calls made by each party, number of calls blocked by
a busy network, and number of calls that were successful, as well
as time-dependent statistics such as average number of waiting
calls for each party, and average number of calls in the system.
The summary statistics are used mainly for rough checking and
debugging, but may be used for preliminary analysis, too.

5.2 The Attempt Record

As each call attempt is resolved, a record is written into the
call attempt log. Each attempt record consists of

o the call sequence number

o the attempt number

e the time at which the attempt was initiated
e the time at which the attempt was resolved

o the result of the attempt.

Note that when an attempt is connected, it is not yet resolved
because it may be interrupted. Only when the attempt is either
completed or interrupted is the result known. The result of each
attempt is coded in the record as a two digit number to make
analysis easier. The first digit gives general information according
to the following table:

A terminating status.
-4 | A status from the C? sub-model.
-9 | A status from the CIN sub-model.

[

For example, code 70 indicates a CIN preempt, while code 30
indicates a C? preempt by the origin of the preempted call and
code 02 indicates deadline delete. Many codes in the CIN range
are unassigned to allow the CIN modeler to record specific infor-
mation not important to the C? sub-model.

This output design allows independent performance mea-
surement in the two sub-models. For example, if the first digit
of the result code is 5,6,7,8 or 9, the call attempt was terminated
due to some CIN action. Thus, the analyst may determine the
ratio of attempts terminated by CIN action by computing the
ratio of attempts with codes 5-9 to attempts with codes 1-9.

All changes in the C? sub-model’s state are caused by either
the initiation or termination of a call attempt. Since the attempt
log records the initiation time, termination time and result of
each attempt, it is a complete history of the C? sub-model’s state.
Following the same pattern, the CIN modeler can also determine
each change of state. Thus, the entire history of the C? and CIN
sub-models can be reconstructed from the attempt log.

5.3 Analysis

As shown in Figure 7 this attempt record file is part of a
relational data base including the troop-list file, the needline ref-
erence file, and the call script file. The output file is indexed to
the call script file by the call sequence number. The call script
file is indexed to the troop-list file and the needline reference file
through the party and needline indices respectively. This struc-
ture of information in the four files allows efficient data storage
and analysis of the simulation run.

The call attempt label in the call script also helps in the
analysis. This field is completely under the control of the modeler
and can be used to achieve a wide range of effects. For example,
one column could be a flag which indicates the calls of highest
interest to the analyst. The analyst can use this flag to easily
make a sub-file containing only these calls.

Every simulation creates a new attempt record file, and it is
very important that the correct set of files is used for the analysis.
To prevent the analyst from using the wrong set of files, C3INAT
internally labels these files in the first record. This record is in a
format compatible with the other records.

The first record in the call-script file, the troop-list file, and
the needline reference file contains the respective file name and

