Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

MULTIVARIATE SIMULATION OUTPUT ANALYSIS

John M. Charnes

Department of Management Science
University of Miami
Coral Gables, Florida 33124-8237

ABSTRACT

This paper gives an overview of some multivariate
statistical techniques that can be used in analyzing
discrete-event simulation output. A general discus-
sion of multivariate output is given, as well as meth-
ods for analyzing the output from two fundamentally
different types (terminating and steady-state) of sim-
ulation models. References are provided for more ad-
vanced techniques of multivariate output analysis.

1 INTRODUCTION

There has been considerable activity recently by re-
searchers on the problem of making statistical infer-
ences simultaneously on more than one output mea-
sure of interest in simulation modeling (Chen and
Seila 1987; Yang and Nelson 1988; Charnes and Kel-
ton 1988; Charnes 1990). The intent of this paper
is to give an overview of some multivariate output-
analytic techniques for simulation practitioners. It
will attempt to highlight some of the important mul-
tivariate statistical techniques that may be found use-
ful in analyzing simulation output.

The methods presented here will of most interest
to those analysts wishing to extract more informa-
tion from their simulation models. Novice analysts
looking for basic information on simulation output
analysis should consult simulation textbooks, such as
Bratley, Fox and Schrage (1987) or Law and Kelton
(1991), or one of the tutorial papers published in pre-
vious Proceedings of the Winter Simulation Confer-
ence and the references therein.

The next section discusses multivariate output
from simulation models and contrasts their analysis
to the univariate case. Section 3 discusses terminat-
ing simulation models. Section 4 presents some tech-
niques to be used with steady-state models. Section 5
concludes the paper and gives references to more ad-
vanced techniques of multivariate output analysis.
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2 MULTIVARIATE OUTPUT

Most simulation models produce outputs on more
than one measure of interest, and these outputs are
usually cross-correlated as well as being autocorre-
lated. If cross correlation of the output measures is
important to the simulation analyst, a multivariate
technique should be used with the output data gen-
erated by the simulation model.

Two simple examples serve to illustrate the useful-
ness of considering multivariate, rather than univari-
ate, output from simulation models.

Example 1. A bank manager is considering
changing the present configuration (Layout 1) of the
teller windows in the lobby from one in which both
private and corporate customers are served by any
of the available tellers, to one in which certain tellers
serve only private customers, and certain tellers serve
only corporate customers (Layout 2). The two differ-
ent layouts are illustrated schematically in Figure 1.
Corporate customers are represented by the crosses
(x) and private customers are represented by the
open circles (o).

The bank manager may be willing to change the
lobby layout if it decreases the time spent waiting in
the bank by corporate customers, even if it means the
time spent waiting by private customers increases by
a “small” amount. To help make the decision, the
manager wants to know the correlation between the
average times spent waiting by both types of cus-
tomers, because she feels that private customers may
be more tolerant of slightly longer delays if they ob-
serve corporate customers experiencing long delays
when they do.

Example 2. Two states of a simple tandem queue-
ing system are shown in Figure 2. The customers,
depicted as open circles (o), arrive to the system and
wait on line, if necessary, to be served individually by
Server 1. The customers then proceed to Server 2,
and wait on line there, if necessary, to be served in-
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Figure 1: Two Bank Lobby Layouts
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Figure 2: Tandem Queueing System
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dividually by Server 2, after which they depart from
the system. Server 1 has a mean service rate p; =1
customer per unit time, while Server 2 has a mean ser-
vice rate of uz = 10 customers per unit time. If only
the total number in system is observed, the two states
appear to be identical; in both State 1 and State 2,
there are six customers in the system. However, the
difference between the two states is quite noticeable
to an arriving customer who occupies the last spot on
line in Server 1’s queue. In State 1, which has only
two customers at Server 1 (the slower server), the cus-
tomer is likely to get through the system much more
quickly than in State 2, which has four customers at
Server 1. Thus by looking only at univariate out-
put data (such as total number in system), rather
than multivariate (such as the 2-dimensional vector
of number of customers at each server), a simulation
analyst may miss important information about the
system that might be useful for making decisions.

For example, if this simple system represented some
portion of a factory, and the factory configuration
were such that the queues at Server 1 and Server 2
were able to share plant-floor space, the plant man-
ager may well be interested in the correlation between
the numbers in queue. Frequent occurrences of the
numbers in queue being large simultaneously (indi-
cated by a large positive correlation) could require the
allocation of more floor space to the servers’ queues.

By using multivariate statistical-analytic methods
with the data obtained from valid simulation models,
decision makers can extract more information from
which to make inferences on the processes being mod-
eled. Constructing multivariate confidence regions on
the mean vector of the data-generating process is one
way to summarize information about each of the uni-
variate processes comprising the multivariate process,
as well as the correlations among processes. The next
two sections describe techniques for constructing con-
fidence regions that could be applied to the two ex-
amples given above.

3 TERMINATING SIMULATIONS

There are two different types of discrete-event simu-
lation models that call for different basic approaches
to experimental design as well as to constructing con-
fidence regions on the mean. In the terminating simu-
lation case, where the system being modeled has spe-
cific “start-up” and “shut-down” times (e.g., the bank
described in Example 1, which opens at 9 A.M. and
closes at 3 P.M.), the simulation analyst can make in-
dependent replications of the model, each represent-
ing one complete succession from “start up” to “shut
down.”
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If the simulation analyst calculates point estimates
of the parameters of interest from each replication
(such as the averages of the time spent in the bank by
the private and the corporate customers), the result
will be a sequence of independent and identically dis-
tributed (iid) random vectors that can be analyzed
using classical multivariate statistical methods. By
viewing the output as vectors and using multivari-
ate methods, rather than analyzing the components
of the vectors separately with univariate statistical
methods, the analyst can get an estimate of the cor-
relations among the vector components that may pro-
vide useful information to the decision maker about
the process being modeled.

3.1 Joint Confidence Regions

One multivariate technique that can be applied is the
construction of a joint confidence region (rather than
an tnterval ). The procedure is based on Hotelling’s
T? distribution, and is the generalization of the uni-
variate t-distribution confidence-interval procedure to
higher dimensions. The validity of the procedure rests
upon the assumption of multivariate normality of the
data. See Anderson (1984), Johnson and Wichern
(1988), or Morrison (1976) for a fuller discussion of
this procedure.

Consider a simulation model that is replicated R
times, and that has D measures of interest. The ob-
servations are denoted by X(") = (Xgr), ... ,Xg) )’
(' denotes matrix transposition), where Xt(ir) is the
value of the dth measure of interest on the rth repli-
cation. The measure of interest may be the average
cycle time, time-average number in queue d, or some
other point estimator calculable from each replica-
tion. The analyst wishes to construct a confidence
region on the true mean vector of the parameters

31
i=E[x0] =

KD
To form the confidence region, find first
Zg:l X%";/R
1 Z Zr:l X2r /R
x(r) = .

Zf:l Xg)/R

Then an unbiased estimate of the variance-covariance
matrix of the vector of point estimators is

R
S = ey X0 - DX - X,

T (R-1 —
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and a 100(1—a)% confidence region for the true mean
vector of the parameters of interest is given by the set
of all vectors @ such that

D(R-1)

X-0)s'(X-0)< R(R=D)

Fp r-p(a)

where Fp p-p(a) is the upper (100a)th percentile
of the F distribution with D and R — D degrees of
freedom.

This procedure gives a formula for an ellipsoidal re-
gion, the exact shape of which depends upon the mag-
nitudes and algebraic sign of the off-diagonal terms
of the matrix S. Because it is the relative magnitude
of the off-diagonal elements that is important, it may
be informative to compute the correlation matrix, C,
for the mean vector. This is calculated as

S,'j
)
5iiSjj

where s;; is the (4, j)th element of S. The element c;;
of C gives the correlation between point estimator
¢ and point estimator j and thus will be such that
-1<¢; <1.

With two parameters of interest, the confidence re-
gion can be plotted as an ellipse in two-dimensional
space. For three parameters, the region is a three-
dimensional ellipsoid. For more than three param-
eters, the region can not be plotted; however, it is
a straightforward calculation to check whether any
given vector will be in the confidence region, so that
one can easily check for combinations of parame-
ters that are undesirable (such as short corporate-
customer delays and long private-customer delays).

Note that the validity of this procedure rests upon
the assumption of multivariate normality and inde-
pendence of the vector observations taken from each
replication. Obtaining independent replications in
simulation modeling is not usually a problem, and
averaging over each replication will tend to make the
point estimates normally distributed. However, the
analyst should be aware that the validity of these two
assumptions are important for the successful use of
this method in practice.

Cij =

3.2 Simultaneous Confidence Intervals

Usually, the analyst will want to construct individual
confidence intervals on the mean of each component
process in the output vector. However, one must be
careful in constructing more than one confidence in-
terval from simulation output, as the overall level of
confidence that all intervals with the same nominal
confidence level will cover their respective means is
less than the nominal confidence level of each interval.
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The exact amount less is difficult to determine; how-
ever, the Bonferroni Inequality gives a simple means
of setting the individual confidence levels in order to
obtain a lower bound on the overall level of confidence.

In particular, let Cy denote a confidence statement
about the mean value of the dth component of the
output vector. If

Pr(Cqtrue)=1—-ay ford=1,...,D
then
Pr(all Cq true) > 1 - (a; + a2+ ---+ ap).

Thus, for example, if each one of D confidence inter-
vals is constructed at the 1 — /D level, one may have
an overall level of confidence of at least 1 — « that all
D parameters lie in the D-dimensional “box” defined
by the D confidence intervals.

If the vector X and the matrix S has been calcu-
lated as descibed in the previous section, individual
“Bonferroni Intervals” can be constructed as follows
on the mean of each parameter of interest:

T; * fkr-1 (%) %

- o Spp
o * Hr-y (QD) R

where Z,; is the dth element of the vector X;
t(r-1)(35) is the upper (100a/2D)th percentile of
the t distribution with (R — 1) degrees of freedom;
and sqq4 is the dth diagonal element of S.

The advantage of using Bonferroni Intervals is their
ease of construction (they are merely the combina-
tion of several univariate intervals) and interpreta-
tion. The disadvantage is that, for large D, the in-
tervals may be very wide, and thus not very precise.
Further, the same caveats in regard to the indepen-
dence and normality assumptions given previously for
joint confidence regions apply here. The actual lower
bound on the coverage probability for the Bonferroni
method depends upon the true coverage probabilities
of the individual confidence intervals. If, individu-
ally, the univariate confidence intervals do not obtain
their nominal coverage, use of the Bonferroni Inequal-
ity will not ensure that the bound on the nominal
coverage given by the inequality will obtain.

4 STEADY-STATE SIMULATIONS

In a steady-state simulation, the system being mod-
eled has no specific “start-up” or “shut-down” times.
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An example is the simulation of a factory that op-
erates twenty-four hours a day, seven days a week.
In cases like this, the simulation analyst is most of-
ten interested in estimating steady-state parameters
of the model. That is, the analyst assumes that if
the model is in operation long enough, it will reach
a state of statistical equilibrium, which means intu-
itively that the means, cross covariances, and autoco-
variances (defined below) of the output process will
be invariant to the passage of simulated time.

As in the univariate case, if the initial conditions for
the simulation are not representative of steady-state,
the simulation must be allowed to “warm up” by run-
ning for a suitable length of time to mitigate any bias
induced by the non-representative initial conditions.
Schruben (1981) gives a multivariate method for de-
ciding when the simulation appears to have reached
steady state.

Once the initial transient observations have been
identified, they are usually ignored and the remain-
ing observations are analyzed. However, as in the
univariate case, the autocorrelation problem makes
it more difficult to analyze these data than in the
terminating case. This section deals with analyzing
multivariate output in the steady-state case.

4.1 Autocorrelation Function

In general, if a simulation model produces the station-

ary sequence of D-dimensional vector observations
{x-11x21 .. -,XT},

where X, = (XltyXZt, . .,XDt)I and E[Xt] = ﬁ =

(#1, p2,...,up)’, the output vectors will not be iid.

The dependence among the elements and across time

is characterized by the autocovariance function,

L(h) = E[(X: — @)(Xe4n — £)'],

which is a function of only the lag, h, for a stationary
sequence. For univariate processes, the autocovari-
ance function is a scalar function of A but for mul-
tivariate processes, I'(h) is a matrix. The autoco-
variance of the ith component of the vector output
sequence is given by the corresponding diagonal ele-
ment in T'(h), vi;(h). The cross covariances are given
by the off-diagonal terms in the autocovariance func-
tion, Vij (h) (2 # .7)

In practice, if the observations are simultaneous (all
elements of the observation vector are taken at the
same point in simulated time), and equally spaced
in simulated time, it may be informative to compute
the sample autocorrelation function, R(h), which is
a normalized version of the sample autocovariance
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function, G(h), calculated from the simulation out-
put. The sample autocovariance function is found
from the data as
p T=h . .
G(h) =73 ;(Xt = X)(Xe4n — X)'

for h =0,1,2,...,T — 1. For large h, the estimates
will be calculated from only a few observations, and
thus may be poor; however, much insight can be
gained from calculating these matrices for small lags
(e.g., h =0,1,2,3). Then the sample autocorrelation
function is computed from the elements of the Gs as

9ii (h)
/9ii(0)g;; (0)
Because these are correlations, it will be true that

-1< ‘I‘,'j(h) <1 Vijh

rij(h) =

The sample autocorrelation function may reveal
important information about the dependence struc-
ture of the processes being modeled. For example, a
model of a factory with ten work centers on which a
10-dimensional vector of numbers at each work center
is observed at equally spaced time periods will yield a
(10 x 10) autocorrelation matrix for each lag, h, that
will indicate how much a work center “downline” may
be affected by backups at previous work centers. High
values of r;;(0), for instance will tell the analyst that
the relative (to the mean) number at work center j
will follow closely the relative number at work center
i. High values of r;;(h) will indicate that high (low)
numbers at work center ¢ will tend to be followed by
high (low) numbers at work center j, but not until a
lag of h time units later. The matrix autocorrelation
function may be worthwhile calculating for only this
reason—it gives the analyst more information about
the characteristics of the operation.

4.2 Multivariate Batch-Means Method

The multivariate batch-means (MBM) method can
be used to construct confidence regions on the mean
vector in a manner similar to that described for termi-
nating simulations, but to do so with autocorrelated
data.

The MBM method attempts to circumvent the au-
tocorrelation problem without losing the information
on cross-correlation by grouping the data into (ap-
proximately) uncorrelated batches. This is the same
idea behind the nonoverlapping batch-means method
used with univariate data. To use the MBM method
properly, the analyst must use simultaneous observa-
tions in order to make the cross correlation meaning-
ful. (The observations need not be equally spaced.)
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The procedure is begun by grouping the elements
of the output matrix

X1 X2 - XaiT
X1 Xo2 - Xaor
Xp1 Xp2 - Xpr

»

into m serially uncorrelated (approximately) batches
of length k (T = km) and finding the vectors of
“batch means” to get

Yip Y2 - Yim
Yo1 Yao -0 Yom
Ypp Yp2 - Ypm

where the batch means are computed as

1 &
Y;= T Z Xit.
t=(j-1)k+1

The method then proceeds as if the vectors

YD.j

are iid multivariate normal random vectors. That is,
first a point estimate of the mean is found as

m

X‘:%Z\Q

and the sample variance-covariance matrix is com-
puted:

1 < -~ ~
S= ;_—1;("1‘ —B)(Y; —p).

Then a 100(1 — )% confidence region for y is com-
puted as the set of all vectors ® such that
- PRp— D(m —1)

(X—@)S (X—@) S —m(m_D)Fa;D,m—D-

A critical step in using the MBM method is the
determination of the number of vector observations
per batch, k (or, equivalently, the number of batches,
m). The usual method of making this determination
is to assume that the batch-means process can be
sufficiently approximated by the first-order, vector-
autoregressive (VAR(1)) model

Y; =Y+ ¢ for i=2,...,m,
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where ® is a (D x D) matrix of autoregression coef-
ficients and the ¢; are (D x 1) iid vectors of random
errors drawn from the multivariate normal distribu-
tion. Then k is chosen such that Hg: & = 0 is not
rejected. Implicit in the use of this model is the as-
sumption that if the first-order serial correlation is
zero, then the higher-order serial correlations will also
be zero. Yang and Nelson (1991) give some guidelines
for choosing k. Charnes (1990) found that a good test
statistic for Hg 1s the F-approximation to the Wilks
likelihood-ratio procedure suggested by Rao (1951).

4.3 Simultaneous Confidence Intervals

As in the terminating simulation case, an analyst
will probably want to construct individual confidence
intervals on the true mean of each component pro-
cess. One way to accomplish this is to use the uni-
variate overlapping batch means method with each
component process taken individually (see Schmeiser
1982), while being mindful of the Bonferroni Inequal-
ity when choosing the values of the ¢ statistic used to
construct each interval.

An alternative is to use the elements of S from the
MBM method as follows

Ty £ tm-1) (%) n

s e ()2

01) SDD

= oo (55) R0

Note that by using this alternative method, the an-
alyst is forcing the batch sizes to be the same, which is
not necessarily true when the univariate overlapping
batch means technique is applied to each process indi-
vidually. However, by calculating the matrix S from
the MBM method, the analyst can also get an esti-
mate of the correlation among the estimators of the
means. This will not be true, in general, for the over-
lapping batch means method applied individually to
the component processes.

4.4 Other Multivariate Techniques

More advanced multivariate techniques have been
proposed for analyzing data generated by stationary
processes.

Kabaila and Nelson (1985) give a frequency-domain
time-series technique, and Charnes (1989) gives a
time-domain time-series technique for constructing
confidence regions in the steady-state case. Research
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is currently underway to compare the performance
of these techniques vis-a-vis the performance of the
methods described above.

The regenerative method is a way to analyze
steady-state data in a manner similar to that used in
analyzing terminating data. The idea is to identify
“naturally occurring” cycles in the output processes
from which point estimates of the parameters of inter-
est can be calculated. A recent paper by Seila (1990)
discusses estimation in regenerative simulations and
gives references.

Yang and Nelson (1988, 1991) discuss the exten-
sion of univariate variance reduction techniques to
the multivariate case.

5 CONCLUSION

Multivariate methods must be used if the analyst is
interested in learning about the correlation structure
of the output processes of simulation models. Even if
a joint confidence region won’t be constructed, it can
be informative to calculate the correlation matrix, C,
to gain some insight into the behavior of the model.

Constructing an ellipsoidal confidence region is a
multivariate method that takes into account the cross
covariance among output processes, while simultane-
ous confidence intervals based on the Bonferroni In-
equality do not. However, ellipsoidal confidence re-
gions are harder to interpret, especially for D > 4,
when they can’t be plotted. On the other hand, for
higher D, the Bonferroni confidence intervals can be
very large, and thus not very precise.

Research is continuing in developing and refining
techniques for analyzing multivariate simulation out-
put. Perhaps these methods will soon be included as
part of the standard output routines in the commonly
used simulation software packages.
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