Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

ITERATIVE DESIGN OF EFFICIENT SIMULATIONS USING MAISIE*

Rajive L. Bagrodia

Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024

ABSTRACT

Maisie is a C-based simulation language that en-
courages iterative design of efficient simulations using
step-wise refinements. Maisie is among the few lan-
guages that cleanly separates the simulation program
from the underlying algorithm (sequential or parallel)
that is used to execute the program. It is thus possi-
ble to design a sequential simulation and, if needed,
to subsequently port it to a parallel machine with few
modifications. This paper gives a brief introduction
to modeling and simulation using Maisie. It develops
a complete Maisie model of a queuing network and
illustrates both sequential and parallel implementa-
tions of the model.

1 INTRODUCTION

Simulation is an inherently iterative activity: the
level of detail desired in the model of a physical sys-
tem is rarely known a priori. A prototype model
serves to identify the critical parts of the system that
need further elaboration and detailed analysis. This
paper describes a simulation language called Maisie
that encourages a programmer to develop modular
simulations using step-wise refinement, where the re-
finements progressively transform a prototype to an
efficient (sequential or parallel) implementation. The
design of a Maisie simulation is separated into two
parts:

e design of a prototype simulation which models
the physical system at the appropriate level of
detail

e efficient implementation of the simulation on a
sequential or parallel architecture.

*This research was partially supported by NSF (CCR 88
10376) and by Hughes Aircraft Co and State of California MI-
CRO project

243

The purpose of the initial prototype is to ensure
that the simulation program is an appropriate model
of the physical system. In the initial stage, the em-
phasis is on rapid model design, rather than its effi-
cient execution. Maisie constructs allow events and
their enabling conditions to be specified at a high level
of abstraction. Further, many simulations may be
described graphically using an interactive icon-based
model definition facility (Golubchik et al, 1991). This
allows an analyst to explore a variety of alternative
representations with minimal effort. After defining
an appropriate model, it may possibly be refined to
improve its efficiency. Simple monitoring facilities are
(transparently) attached to the program to allow the
analyst to identify the set of most frequently executed
events. If desired, the enabling conditions and the ac-
tions associated with these events may be elaborated
in terms of other Maisie constructs to improve effi-
ciency. In the initial stage, the program is executed
using a sequential simulation algorithm. Once the se-
quential model has been validated the program is pro-
gressively refined such that the enabling conditions
are expressed using more efficient implementations.
If the completion time of the sequential implementa-
tion is not acceptable, parallel implementations may
be explored.

Maisie maintains a clear separation between the
simulation program and the specific algorithm that is
used to execute the program on a sequential or par-
allel architecture. With minor modifications, Maisie
programs may be executed using a sequential algo-
rithm or a variety of parallel algorithms. To execute
the program on a parallel architecture, the initial re-
finements to the sequential program simply allocate
Maisie processes among the available processors. In
particular, at this stage the analyst need not be con-
cerned with the specific simulation algorithm that is
used to execute the program on the parallel architec-
ture. A parallel Maisie program may, in general, be
executed using a variety of simulation algorithms in-

244

cluding conservative algorithms (Misra 1986) or opti-
mistic algorithms (Jefferson 1985, Chandy and Sher-
man, 1989). The final refinements to the program are
dictated by the specifics of a particular simulation al-
gorithm that is to be used. If an optimistic algorithm
is used, these refinements can be targeted to reduce
either state saving or recomputation overheads for the
program. In contrast, if a conservative algorithm is
to be used, the optimizations could reduce the syn-
chronization overheads. The goal at this stage is to
exploit the specifics of the application and the simu-
lation algorithm to generate an efficient implementa-
tion. Note that the availability of an equivalent se-
quential implementation permits consistent compar-
isons of the relative efficiency of the sequential and
parallel implementations of a given application.

In the remainder of this paper, we give a brief de-
scription of the language and use a simple queuing
network to illustrate its use in designing efficient sim-
ulations.

2 MAISIE SIMULATION LANGUAGE

Maisie (Bagrodia and Liao 1990a, 1990b) enhances C
with a few primitives to model objects and their inter-
actions. Maisie uses an entity-type to model objects
of a given type. An entity-instance, henceforth re-
ferred to simply as an entity, represents a specific ob-
ject and may be created and destroyed dynamically.
An entity is created by the execution of a new state-
ment and is automatically assigned a unique iden-
tifier on creation. An entity can reference its own
identifier using the keyword self. Maisie also defines
a type called e name which is used to store entity-
identifiers. Figure 1 presents an entity called driver
that contains a new statement (line 4). Execution of
this statement creates an instance of entity manager
and stores its identifier in variable r1. Every Maisie
program must have a driver entity. This entity initi-
ates execution of the simulation program and serves
essentially the same purpose as the main function in
C.

Entities communicate with each other using
buffered message-passing. Maisie defines a type called
message, which is used to define the types of mes-
sages that may be received by an entity. Definition of
a message-type is similar to a struct; in figure 1, the
manager entity type defines a message-type called
req with two parameters (or fields) called count and
hisid respectively (line 14). An entity sends a message
to another by executing an invoke statement. Every
entity is associated with a unique message-buffer. Ex-
ecution of an invoke statement deposits a message in
the message-buffer of the named entity. For instance,

Bagrodia

the invoke statement in line 6 will deposit a req mes-
sage in the message-buffer of entity 71. A message is
deposited in the destination buffer at the same sim-
ulation time as it is sent. If required, an appropri-
ate hold statements (described subsequently) may be
executed to model message transmission times or a
separate entity may be defined to simulate the trans-
mission medium.

An entity accepts messages from its message-buffer
by executing a wait statement. The wait statement
has two components: an optional wait-time (Z.) and
a required resume-block. If . is omitted, it is set to
an arbitrarily large value. The resume-block is a set
of resume statements, each of which has the following
form:

mtyp(m;) [st b;] statement;;

where m; is a message-type, b; an optional boolean
expression referred to as a guard, and statement; is
any C or Maisie statement. The guard is a side-effect
free boolean expression that may refer to local vari-
ables or message parameters. If omitted, the guard is
assumed to be the constant true. The message-type
and guard are together referred to as a resume condi-
tzon. A resume condition with message-type m; and
guard b; is said to be enabled if the message buffer
contains a message of type m;, which if delivered to
the entity would cause b; to evaluate to true; the cor-
responding message is called an enabling message. A
resume condition that is not enabled is said to be
disabled.

With the wait-time omitted, the wait statement is
essentially a selective receive command that allows
an entity to accept a particular message only when
it is ready to process the message. For instance, the
wait statement in line 17 of the manager entity con-
sists of two resume statements. The resume condition
(line 18) in the first statement ensures that the entity
accepts a req message only if the requested number
of units are currently available (the requests are ser-
viced in first-fit manner). The statement associated
with this resume condition (line 19-20) simply allo-
cates the desired resources to the requesting entity.
Keyword msg is used to refer to the last message
that was removed from its buffer and delivered to the
entity. The second resume statement (line 20) accepts
a free message and the associated action adds the re-
turned units to the available resource pool. In general
the resume condition in a wait statement may include
multiple message-types, each with its own boolean
expression. This allows many complex enabling con-
ditions to be expressed directly, without requiring the
programmer to describe the buffering explicitly.

If two or more resume conditions in a wait state-
ment are enabled, the timestamps on the correspond-

Efficient Simulations using Maisie

ing enabling messages are compared and the message
with the earliest timestamp is removed and delivered
to the entity. If all resume conditions in the wait
statement are disabled, a timeout message is sched-
uled for the entity t. time units in the future. The
timeout message is canceled if the entity receives an
enabling message prior to expiration of t.; otherwise,
the timeout message is sent to the entity on expira-
tion of interval t..

A hold statement is provided to unconditionally
delay an entity for a specified simulation time. The
hold statement in line 8 will suspend the driver entity
for t units in simulation time.

entity driver{}
{ e-name rl;
message done;
rl = new manager{};

1
2
3
4
5
6 invoke r1 with req{self,4 };
7 wait until mtyp(done)

8 hold(t);

9 e

1

0}

11 entity manager{}

12 {

13 int units = MAX_UNITS;

14 message req {e_name hisid; int count; };
15 message free {int count; };

16 for (;;)

17 wait until

18 { mtyp(reg) st (units >= msg.req.count)
19 { units = units—msg.req.count;

20 invoke msg.req.hisid with done;}
21 or mtyp(free)

22 unils = units+msg.free.count;}

23 }

Figure 1: A Resource Manager

3 EXAMPLE

In this section we develop a Maisie model for a sim-
ple queuing network and subsequently refine it for
parallel execution. We also provide completion time
measurements for the sequential and parallel imple-
mentations of the network.

Consider a closed queueing network (henceforth re-
ferred to as CQNF) that consists of N fully connected
switches. Each switch is a tandem queue of Q fifo
servers. A job that arrives at a queue is served se-
quentially by the Q servers and is thereafter routed
to one of the N neighboring switches (including itself)
with equal probability. The service time of a job at

245

Server Queue

= | [| []
|_>L.__

Router

Y
]
|

il

Y

Figure 2: Model of a 2 Switch CQNF network

a server is generated from a negative exponential dis-
tribution, where all servers are assumed to have an
identical mean service time. Each switch is initially
assigned J jobs that make a predetermined number
of trips through the network.

The Maisie model of this network consists of two
primary entities: a queue entity to model the tandem
servers in a queue and a router entity that routes a
job after it has completed service at a queue. Fig-
ure 2 displays the model of a network with N=2 and
Q=3. Each job in the network may be modeled as
a separate entity or be abstracted by a sequence of
messages. We adopt the latter approach. The com-
plete Maisie program for this example is in figure 3.
The driver entity is responsible for creating the queue
and router entities. As the queue and router enti-
ties communicate with each other, each must have
the entity-identifier for the other. Rather than use
global variables for this purpose, the appropriate id
is passed to the entity as either an entity parameter
(as when creating the router entities in line 8) or in
a separate message (as for the queue entities in line
11). The driver entity also instantiates a statistics
collection entity (basic_stats) from the Maisie library
(line 4). This entity is used to compute the average
system time spent by a job in a queue.

A Maisie program can terminate in one of two
ways: when the simulation clock exceeds some spec-
ified value or when the event-list is empty. In either
case, when the simulation has terminated, a special
message called simdone is sent to each entity. The
driver entity is programmed such that on receipt of
this message, it will send a dump message to the
statistics collection agency which causes it to print
its report.

We first consider the gqueue entity (lines 30-52)
that simulates service of incoming jobs at each of its
servers. Array lastj tracks the time at which the last
job serviced at the queue departed from each server.
The service time for a job at the i*® server is generated

246

from an exponential distribution and used to update
lastj[i] (line 45). When the job has been serviced
at each server, its trip count and service completion
time are incremented and it is forwarded to its router
entity(line 49). Also, the total time spent by the job
in the queue is sent to the statistics collection entity
(line 50).

The jobs initially allocated to each switch of the
physical network are allocated to the corresponding
router. On being created, a router entity distributes
these jobs among the various queue entities (line 21).
Subsequently, for each incoming job, if the incoming
job has not completed its required number of trips,
the router entity generates a future message that sim-
ulates arrival of the job at the next switch in the net-
work: it delays the job appropriately by executing a
hold statement in line 26 (function sclock() returns
the current value of the simulation clock), and then
forwards the job to one of the N gueue entities (line
27). Note that if the incoming job has completed the
required number of trips, no additional messages are
generated or scheduled. This implies that the event-
list becomes empty when each job in the system has
completed the required number of trips.

The preceding Maisie program was executed on
a Sun Sparcstation for a network of 16 switches.
The configuration information together with the com-
puted statistics are shown in figure 4.

The program was subsequently refined for a par-
allel implementation where each queue and its cor-
responding router entity execute on a separate pro-
cessor. Except for the driver entity, the remainder of
the program remains unchanged. The driver entity
must be changed to specify remote creation of enti-
ties. As seen from figure 5, the only change in the
entity is to extend each new statement with the at
clause (lines 6 and 8) to indicate the processor num-
ber on which the corresponding entity is to be created
and executed. To execute the program on a parallel
architecture, the mayc command must specify the ar-
chitecture and number of nodes as follows:

% mayc cqnf.may -arch s2010 -nodes 16

The preceding command specifies that the Maisie pro-
gram in file cgnf.may be executed on 16 nodes of the
Symult S2010 multicomputer. The program is ex-
ecuted transparently using an optimistic simulation
algorithm. Figure 6 shows the speedup that was
obtained with the parallel version as the number of
switches in the network is increased from 1 to 8. The
sequential version used for the comparison was exe-
cuted on a single node of the same machine using a
sequential simulation algorithm.

Bagrodia

#include "“cmay.h"
#define N 3
extern entity basic_stats{};

1 entity driver{}

2 { e_name rtr[N],q[N],statl;

3 int 1i;

4 statl= new basic_stats{"Average System Time"};
5 for (i=0;i<N;i++)

6 q[i] = new queue{5,1000,stat1};
7 for (i=0;i<N;i++)

8 rtr[i] = new router{10,10,q};

9 for (i=0;i<N;i++)

11 invoke q[i] with idmsg{rtr(il};
12 wait until mtyp(simdone)

13 invoke statl with dump;

14 }

16 entity router{njobs,mtrips,qids}

16 int njobs, mtrips;

17 e_name qids[N];

18 { message job{int stime; int count;} ji;
19 int i;

20 for (i=0;i<njobs;i++)

21 invoke qids[i%N] with job{0,0};

22 for (;3;)

23 wait until mtyp(job) {

24 jl=msg. job;

25 if (ji.count < mtrips) {

26 hold (j1.stime-sclock());

27 invoke qids[iurand(0,N-1)] with job=j1;}
28 }

29 }

30 entity queue{nsrvr, mtime, statid}

31 int nsrvr,mtime; e_name statid;

32 { int i,t1,lastj[nsrvr];

33 e_name rid;

34 message job{int stime; int count;} ji;
35 message idmsg{ e_name id;};

36

37 wait until mtyp(idmsg) rid= msg.idmsg.id;
38 for (i=0;i<nsrvr;i++)

39 lastj[i]=0;

40 for (;;)

41 wait until mtyp(job) {

42 jl=msg. job;

43 t1=ji.stime;

44 for (i=0;i<nsrvr;i++) {

45 lastj[i]=MAX(t1,lastj[i]) + expon(mtime);
46 ti=lastj[il;

a7 }

49 invoke rid with job{t1,jl.count+1};

50 invoke statid with value{(t1-j1.stime)};
51 }

52 }

Figure 3: Maisie model of CQNF

Efficient Simulations using Maisie

CQNF Configuration simulated:
No. of switches = 16
Initial no. of jobs/switch = 16
No. of servers/queue = 10
No. of trips/job = 10

Statistics Collected: Average System Time
Total number of values 2560
Mean value 24988.93
Maximum value 52407.00
Minimum value 7160.00

Figure 4: Sample Run of CQNF

1 entity driver{}

2 { e_name rtr[N],q[N],statl;

3 int 1i;

4 statl= new basic_stats{"System Time"};
5 for (i=0;i<N;i++)

6 q[i] = new queue{5,1000,statl} at i;
7 for (i=0;i<N;i++)

8 rtr(i] = new router{10,10,q} at i;

9 for (i=0;i<N;i++)

10 invoke q[i] with idmsg{rtr(il};

11 wait until mtyp(simdone)

12 invoke statl with dump;

13 }

Figure 5: Parallel CQNF: Driver Entity
4 SUMMARY

The Maisie simulation language was designed by en-
hancing C with a few primitives to create entities and
to model events. An important construct of Maisie
is the wait statement which allows a programmer
to directly specify an event and its enabling condi-
tion. Appropriate use of the wait statement leads to
succinct programs and reduces program development
time. Maisie models may also be constructed visu-
ally using an interactive front-end. The sequential
implementation provides an interactive trace facility
to facilitate program debugging. An event monitor-
ing facility is also provided to allow an analyst to
identify the compute-intensive portions of the model.
This paper provided a quick introduction to common
language features. Readers are referred to the Refer-
ence manual for a complete description.

Maisie programs may be executed on any ma-
chine (including laptop computers) that supports C.
With minor modifications, a Maisie program may
also be executed on parallel multicomputer architec-
tures running UNIX-like operating systems as also
on networks of (heterogeneous) workstations running
UNIX. Performance studies on the efficiency of par-
allel Maisie implementations in the simulation of de-
terministic and stochastic systems may be found in
Bagrodia and Liao (1990c) and Bagrodia, Chandy

247

(J =16,Q = 20)

[S2BNE B o]
T
1

5
Speedu
3

1 1 1 1

2
1
0
3 4 5 6
Number of Nodes

Figure 6: Speedup for CQNF
and Liao (1991).

REFERENCES

R. Bagrodia and Wen-toh Liao. 1990a. Maisie User
Manual. Computer Science Department, UCLA,
Los Angeles, CA 90024.

R.L. Bagrodia and Wen-toh Liao. 1990b. Maisie:
A language and optimizing environment for dis-
tributed simulation. In 1990 Simulation Multicon-
ference: Distributed Simulation, Eds. D.Nicols and
R.Fujimoto, San Diego, California.

R.L. Bagrodia and Wen-toh Liao. 1990c. Paral-
lel simulation of the sharks world problem. In
1990 Winter Simulation Conference, Eds. O.Balci,
R.Sandowski and R.Nance, New Orleans.

R. Bagrodia, K.M. Chandy, and Wen-toh Liao. 1991.
An Experimental Study on the Performance of the
Space-Time Algorithm Preprint Computer Science
Department, UCLA, Los Angeles, CA.

K.M. Chandy and R. Sherman. 1989. Space-time
and simulation. In 1989 Simulation Multiconfer-
ence: Distributed Simulation, Eds. B.Unger and
R.Fujimoto, Miami, Florida.

L.Golubchik, G.Rozenblat,W.Cheng and R.Muntz.
1991. The Tangram Modeling Environment in
Modeling Techniques and Tools for Computer Per-
formance Evaluation, 421-435. Torino, Italy.

D. Jefferson. 1985. Virtual time. ACM TOPLAS,
7(3):404-425.

J. Misra. 1986 Distributed discrete-event simulation.
Computing Surveys, 18(1).

AUTHOR BIOGRAPHY

Rajive L. Bagrodia is an Assistant Professor in
the Computer Science Department at UCLA. His
research interests include parallel languages, dis-
tributed simulation, distributed algorithms and soft-
ware design methodologies. He was selected as a 1991
Presidential Young Investigator by NSF.

