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ABSTRACT

Infinitesimal Perturbation Analysis (IPA) is perhaps
the most efficient derivative estimation method for many
practical discrete-event stochastic systems, whenever it
applies. But there are many situations where it does
not apply directly. Alternative methods such as Likeli-
hood Ratios (LR), Finite Perturbation Analysis (FPA),
Smoothed Perturbation Analysis (SPA), Rare Perturba-
tion Analysis (RPA), and a few others, have been pro-
posed and could be used when IPA does not apply directly.
In this paper, we discuss some links that exist between
these methods and explain them by showing how each of
them can be applied to a specific example, namely to esti-
mate the derivative of the expected number of customers
per regenerative cycle in a GI/G/1 queue, with respect to
parameters of the interarrival and/or service-time distri-
butions. We also give the results of numerical experiments
to compare the performances of these methods.

1 INTRODUCTION

During the past decade there has been an increasing
number of new methods and algorithms for the estima-
tion of the sensitivity of complex queueing systems with
respect to some parameters of the underlying distribu-
tions. Among the many important recent references to
this area, we can cite for instance Glasserman (1991),
Glasserman and Gong (1990), Glynn (1990), Heidelberger
et al. (1988), Ho (1987), Ho and Cao (1991), Ho and
Strickland (1990), L’Ecuyer (1990, 1991), Reiman and
Weiss (1989), Rubinstein (1989), Simon (1989), and Suri
(1989).

Both theoretical and empirical results suggest that
for most discrete-event stochastic systems of interest, In-
finitesimal Perturbation Analysis (IPA) is usually the
most efficient derivative estimation method when it ap-
plies. But in many cases, IPA does not apply directly.
Various alternative methods have been proposed and
could be used in these situations. Such methods include
the use of a Likelihood Ratio (LR) or Score function (SF),
Finite Perturbation Analysis (FPA), Smoothed Perturba-
tion Analysis (SPA), Conditional Infinitesimal Perturba-

1004

Pierre L’Ecuyer
Département d’IRO
Université de Montréal
C.P. 6128, Succ. A
Montréal, H3C 3J7, Canada

tion Analysis (CIPA), Rare Perturbation Analysis (RPA),
and a few others. In this paper, we discuss some links
that exist between these methods and explain them by
showing how each of them can be applied to a specific
example, namely to estimate the derivative of the ex-
pected number of customers per regenerative cycle in a
GI/G/1 queue, with respect to parameters of the inter-
arrival and/or service-time distributions. Applying those
methods is not straightforward, even for such a simple ex-
ample. The development that we follow for deriving our
estimators can be generalized or adapted to many sim-
ilar problems. We also look at the performance of our
estimators on that specific example through numerical il-
lustrations. Of course, the best method for that example
is not necessarily the best in general, but nevertheless,
numerical experiments can give some insight into what
goes on. The estimators that we examine are all based
on a single simulation run. That excludes the family of
finite-difference estimators with or without common ran-
dom numbers (see, e.g., L’Ecuyer and Perron, 1990).
Section 2 introduces the model and explains why
straightforward IPA will not work in that case. In Section
3, we recall briefly how the likelihood ratio (LR) method
applies, yielding a simple unbiased derivative estimate. It
is well known, however, that LR estimators are plagued
with a large variance, especially when the regenerative
cycles (busy periods) are long. We are therefore looking
for better estimators. In Section 4, in the context of our
GI/G/1 queueing example, we describe a finite pertur-
bation analysis scheme called Finite-Difference Phantom
RPA. This approach, based on the thinning of a point
process, was introduced in Vizquez-Abad and Kushner
(1990). It is inspired by ideas used in Suri and Cao (1986)
to study the sensitivities with respect to the number of
jobs circulating in a closed queueing network. In Section
5, following Brémaud and Vizquez-Abad (1991), we take
the RPA approach to the limit and add some smoothing
(conditioning) to obtain an infinitesimal phantom RPA
estimator. In Section 6, we introduce two new estimators
based on Smoothed Perturbation Analysis (SPA), that is,
estimators obtained by applying IPA after having replaced
the objective function by a conditional expectation. Simi-
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lar estimators have been studied in Glasserman and Gong
(1990), L’Ecuyer and Perron (1990), and Wardi et al.
(1990), for different problems. These SPA estimators can
be used to estimate sensitivities with respect to parame-
ters of either the interarrival or service-time distributions.
Further, we explain in Section 7 how any estimator of
the derivative with respect to the arrival rate (whether
or not the arrivals are Poisson) can be transformed into
an estimator of the derivative with respect to the (aver-
age) service rate, and vice-versa. These kinds of indirect
estimators are called surrogate estimators, following the
terminology of Vdzquez-Abad and Kushner (1990). In Ho
and Cao (1985), the same idea was used to estimate sensi-
tivities with respect to routing parameters via sensitivities
with respect to service rates for a closed network. Section
8 reports the results of our numerical experiments and
Section 9 gives concluding remarks. It turns out that our
SPA estimators of Section 6 are the most effective for the
cases that we have examined.

2 NUMBER OF CUSTOMERS PER BUSY CY-
CLE IN A GI/G/1 QUEUE

We consider a GI/G/1 queue with inter-arrival time
distribution F\ and service-time distribution G,. For sim-
plicity, suppose that Fy and G, have respective densities
fr and g,. Here, A and u are continuous parameters with
respect to which we might want to estimate the derivative
of some “performance measure” expressed as a mathe-
matical expectation. We will use 6 as a generic name that
could designate either A or p. The “performance measure”
that we will concentrate on in this paper is the expected
number of customers in a busy cycle.

The evolution of the GI/G/1 queue can be described
conveniently as follows throught Lindley’s equations (1-2)
below. Suppose that the queue is started empty and let @
denote the i-th customer in the system. For each ¢ > 1,
let:

Ai = interarrival time between customer ¢ and ¢ + 1;
Si = service requirement of customer i;

W; = waiting time of customer ;

Xi = sojourn time of customer 1.

Then, one has W), =0, X; = 51, and for each i > 1,

W, = max(0,X.—1 — Ai—1); (1)
X,‘ = W,‘ + S.‘. (2)

That process evolves according to a probability mea-
sure that depends on the parameter §. Assuming that
the queue is stable, this is a regenerative “discrete-time”
Markov chain, where the “time” is viewed as represent-
ing the customer number i (see Asmussen, 1987). The
regenerative points can be defined as the indexes of the
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customers who find the system empty when they arrive.
Let r denote the number of customers in a given regen-
erative cycle, say the first one, and £(§) = Es[r] be its
expectation at parameter value 8.

A standard way to estimate £(6) is to run the system
for say n regenerative cycles and count the total number
of customers in those n cycles, divided by n. This gives
the estimator

b(0)= 337 =Cafn, )

=1

where 7; represents the number of customers in the j-th
regenerative cycle and C,, is the total number of customers
during the n cycles. But estimating £'(8), the derivative of
£(0) with respect to 8, is less simple. An estimation of £'(6)
is necessary, for example, when one wishes to estimate
the derivative of an average “cost” per customer over an
infinite horizon, using LR and a regenerative approach
(see, e.g., Glynn 1990).

One approach for building efficient derivative estima-
tors is IPA. The basic idea of IPA is essentially to use the
derivative of the sample estimator, for fixed underlying
U(0,1) uniform random numbers, as an estimator of the
derivative of the expectation. But in our case here, when
the sequence of U(0, 1) variates that are used to generate
the interarrival and service times are fixed, (3) is piece-
wise constant as a function of . Therefore, whenever the
derivative of (3) is defined, it is zero. This is clearly not a
worthwhile estimator for ¢'(8), which is usually not zero
in the cases of interest. This means that straightforward
IPA does not apply in this case: we cannot interchange
the derivative and expectation.

3 APPLYING THE LR METHOD

A now well known alternative to IPA is the likelihood
ratio (LR) approach, sometimes called the score function
(SF) method. That method can be traced back to Alek-
sandrov et al. (1968). More recent references include
Glynn (1990), Reiman and Weiss (1989), and Rubinstein
(1989). L’Ecuyer (1990) has shown how LR, SF, and IPA
can be presented into a unified framework under which
IPA can be viewed as a special case of LR. L’Ecuyer and
Perron (1990) showed how SPA also fits quite well into
this framework and how LR can be viewed as a special
case of IPA.

The standard LR derivative estimator is simply ob-
tained as the product of the performance measure of in-
terest (here, 7), by the so-called score function. For one
regenerative cycle, this yields (see L’Ecuyer 1990 or Glynn
1990):

PR =Y o (n fo(A) +lnge(S), ()

=1
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where A; and S; are considered fixed when taking the
derivative with respect to . When 8 = X [resp. 6 = p],
the derivative of In g, (S:) [resp. In fi(A;)] vanishes. For
n regenerative cycles, the derivative estimator is obtained
by averaging out the n values of ¥ associated with these
cycles.

4 FINITE-DIFFERENCE RPA

Ordinary perturbation analysis is based on the idea
of introducing tiny perturbations to the system, so that
the nominal and perturbed paths differ almost surely by a
very small amount. In contrast, Rare Perturbation Anal-
ysis (RPA) is based on introducing the perturbations only
rarely, so that the nominal and perturbed paths differ only
very rarely, but the amount of the difference may be large.
For more on RPA, see Vizquez-Abad and Kushner (1990)
and Brémaud and Vizquez-Abad (1991).

To simplify the presentation here, we assume that
® = X and that the arrival process is Poisson with rate
. We therefore have a M/G/1 queue. Suppose that A
is reduced to A — A, for some small constant AX > 0.
Standard finite PA will take that reduction into account
by sliding along the arrival times slightly into the future:
each interarrival time A; is multiplied by A/(A 4+ AX).
RPA, in contrast, will thin down the process by remov-
ing any given arrival with probability AA/\. The path of
the original process is called the nominal path, while the
path of the process with some arrivals removed is called
the phantom path. The customers whose arrival is actu-
ally removed are called phantom customers.

We now explain how the finite-difference RPA deriva-
tive estimator can be computed in a single run. That
derivative estimator will be the difference between the av-
erage number of customers per busy cycle in the nominal
path and the average number of customers per busy cycle
in the phantom path, divided by AX. So, while simulating
the nominal path, we need to compute the total number
of non-phantom customers as well as the number of busy
cycles in the phantom path.

To each customer 1, associate a Bernoulli (AX/)) ran-
dom variable I; which is independent of all the A;’s, S;’s,
and other I,’s. When I; = 1, customer ¢ is a phantom cus-
tomer in the phantom path. The arrival process of those
customers which are not phantoms is a Poisson process
with rate A — AX. (Note that this development also ap-
plies to the situation where the arrival process is a more
general point process.) Computing the total number of
non-phantom customers is trivial: just sum the (1 — I;)’s.
It remains to see how to compute the number of busy
cycles in the phantom path.

Here, the non-phantom customers in the phantom
path keep the same numbers and same attributes that
they had in the nominal path. For example, if the third
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customer is the first phantom, then the third non-phantom
customer in the phantom path will have service time Sy,
not S;. Let W; and X; denote the waiting time and sys-
tem time, respectively, of customer ¢ in the phantom path.
When 1 is a phantom, these quantities can be viewed as
“phantom” times but are nevertheless well defined. The
simplest way of taking into account that a customer has
been removed, in Lindley’s equations, is to replace its
service time by zero. Using that trick, Lindley’s equa-
tions for the phantom system become: W, =W =0,
X = (1= 11)S1, and for i > 1,

W, = ma.x(O,X.‘_l —Ain); (5)
Xi = Wi+(Q-1I)S. (6)
It follows immediately that Wi < W; and X < X; for
each i. Observe that removing customers can split busy
cycles, but can never merge them. Each time a busy cycle
starts in the nominal path, then a busy cycle must also
start in the phantom path (unless the first customer in
that busy cycle has been phantomized, in which case the
corresponding busy cycle in the phantom path will start
with the arrival of the next non-phantom customer). Note
that from the sequence {(Ai, S, X:, Xi), 1 = 1,2,3,...},
one can compute finite-difference estimators for many dif-
ferent performance measures. Computing the number of
busy cycles is equivalent to computing the number of cus-
tomers who are first in their busy cycle, i.e. whose waiting
time is zero. Therefore, the number of busy cycles in the
phantom path is equal to the number of busy cycles in
the nominal path, plus the number of non-phantom cus-
tomers who did wait in the nominal path and are not
waiting any more in the phantom path (i.e. such that
W; = 0 < (1 — I;)W;), minus the number of customers
who did not wait in the nominal path but are now phan-
toms (i.e. such that W; = 0 and I; = 1). To compute
the last two numbers during the nominal simulation, it
suffices to maintain (W.',f(.-) and a counter D. At the
beginning of the simulation, initialize D to zero. When-
ever W; = 0 < (1 — I;)W;, add one to the counter and
whenever W; =1 —I; = 0, subtract one from the counter.
Let n, C, and C denote respectively the number of regen-
erative cycles in the nominal path, the total number of
customers in the nominal path, and the total number of
non-phantom customers in the phantom path. Then, the
finite-difference RPA estimator becomes:

FD-RPA _ 1 c _é_ )
" AA\n =na+D/’
This estimator satisfies

E\[pFP-RPA) _ %

Therefore, it is biased for £'()), due to the finite differ-
ences. However, it can be computed in a single run and

(Exlr] = Ex-an[r]).
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could also be used in more complex situations where IPA
would not apply directly. See Vdzquez-Abad and Kushner
(1990) for an extension to a queueing network problem.

5 AN AVERAGE INFINITESIMAL RPA AP-
PROACH

The bias on the estimator (7) can be reduced by reduc-
ing AX, but at the cost of increasing the variance. The
reason is that when A\ is very small, customer phan-
tomizations become rare events that have a large impact
on the estimator value. Further, that finite-difference es-
timator cannot be taken to the limit directly, that is take
the limit as AX — 0, because when AM is small enough,
there are no more phantom customers and (7) becomes
zero. So, we have exactly the same problem as we had
with IPA in Section 2.

Brémaud and Vizquez-Abad (1991) have developed a
less straightforward way of taking RPA to the limit. Their
approach yields an unbiased derivative estimator. Let us
sketch this approach in the context of our example. Sup-
pose that we simulate the system for one regenerative cy-
cle and let 7 be the number of customers in that cycle
in the nominal path. The simulation starts at the arrival
of the first customer, both in the nominal and phantom
paths. After that first customer has arrived, since the
arrival rate in the phantom process is smaller, some of
the 7 — 1 arrivals that follow can be phantomized, with
the appropriate probabilities. The number K of phantom
customers is a binomial random variable with parameters
r—1and p = AX/). To estimate the derivative, we condi-
tion on K: for each integer kin {0,...,7—1}, we multiply
P[K = k] by the derivative of the expected number of cus-
tomers in the cycle, conditional on the event that K = k
and on the sequence of interarrival and service times in
the nominal path. We then sum up over all values of k.
For k = 0, the conditional derivative is clearly zero. When
A) becomes infinitesimal, it can be shown that the event
{K > 2} can be neglected, so that the problem comes
down to estimating the derivative of the expected number
of customers in the first cycle given the nominal path and
given that K = 1. When K = 1, each customer after the
first one has the same chance of being the phantom, that
is 1/(r = 1). So, for i = 2,...,7, we will look at what
happens when customer i is the (only) phantom in its cy-
cle, and take the average over all these values of i. Let
#) denote the number of customers in the first cycle of
the phantom path when i is the only phantom. This can
be computed using the same kind of Lindley equations as
in the previous section, with I; = 1 and I; = 0 for ¢ # j.
(Note that we need one set of Lindley equations for each
1,1 =2,...,7. This implies a non-negligible overhead.)
The average (infinitesimal) RPA estimator (for one busy
cycle) then becomes (for more details on its derivation,
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see Brémaud and Vazquez-Abad, 1991):

Z(r #9). (8)

=2

A RPA

Brémaud and Vizquez-Abad (1991) show that under rea-
sonable conditions, that estimator is unbiased for £'(8).
They also show some links between this estimator and
the LR method. Finally, a similar estimator has also been
suggested by Gong (1988).

Of course, as for LR, one will use say n regenerative
cycles and estimate the derivative by averaging out the
n values of A~ FF4 associated with these cycles. Note
that here, contrary to what we did for the finite-difference
RPA in the previous section, the number of regenerative
cycles that we consider is the same for both the nominal
and phantom paths. Here, when a busy cycle splits up, we
simply discard what happens in the phantom path until
the start of the next busy cycle in the nominal path.

6 TWO SPA ESTIMATORS

Let us return to the model formulation of Section 2,
where 8 can be either A or u. Observe that the (infinite-
horizon) average number of customers per cycle period is
the inverse of the fraction of customers that are first in
their busy cycles, i.e. whose waiting time is zero. That is

1

40) = Bolrl = 5 =3 (9)

where

Po(W =0) &' Jim -ZP,,(W =0)

represents the probability that a “random” customer in
steady-state has zero waiting time. By differentiating (9),
one obtains

1

9
() = ggBell = ~ R v —o)F 26

Pg(W =0). (10)

We can now estimate £'() indirectly by estimating
Ps(W = 0) and its derivative with respect to 8. To do
so, we consider a simulation with a total number C of
customers (when we simulate for a fixed number n of re-
generative cycles, C is a random variable). Let Z; be the
indicator function of the event {W; = 0}. To estimate
Pg(W = 0) we can take the sample average

c
%ZL (11)

which converges to Po(W = 0) a.s. and in expectation
as C — oo (or as n — o0), by the elementary renewal
theorem (see, e.g., Wolff, 1989).
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As we saw before, since Z; is genmerally discontinu-
ous in @ for fixed underlying U(0,1) random variates,
straightforward IPA cannot be applied directly to (11).
To smooth out the estimator, we can replace Z;;; by its
conditional expectation given X;. Following the notation
in L’Ecuyer (1990) and L’Ecuyer and Perron (1990), for
each i > 1, let w; represent the sequence of standard
uniform U(0,1) variates that have been used to gener-
ate {A1,...,Ai-1,51,...,5:}. Then, X, is a function of
(o,w.').

Now, let:

hi(0,wi) = Po(Wiy1 =0 | wi)
= po(Ai > Xi) = FG(X-‘),

where Fo(X;) 2 1— Fo(X.). Then, we have Ey(hi(0,w:))
= Eg (Eo(Li41 | wi)) = Po(Wis1 = 0), so that a second
unbiased estimator for Po(W = 0) is

%Zh.‘(o,w.‘). (12)

If hi(8,w;) satisfies the assumptions of Theorem 1 in
L’Ecuyer (1990), then an unbiased estimator of 9 Pg(Wi41 =
0)/94 is given by:

WO wi) = Ao P(X0) = — (g5 Fe) (Xi) = fo(X0) 2. X,
(13)
where the derivatives are taken with respect to 8 for w;
fized. In particular, when § = u (and X is fixed), the
right-hand-side of (13) becomes — fi(X;)(8Xi/du). From
(10), (12), and (13), we obtain the following estimator for
the derivative £'(9):

$5PA = —Czhﬁ(a,w-’) (ZC: h¢(0,w.')> ) - (19)

Sufficient conditions for Theorem 1 in L’Ecuyer (1990) to
apply in this case can be obtained in a similar way as for
the examples examined in L’Ecuyer and Perron (1990).

As a second choice for smoothing, let w; represent the
sequence of standard uniform U(0,1) variates that have
been used to generate {As,..., A4, 51,...,Si—1}. Now, h;
is defined as

hi(6,wi) = Po(Wiy1 =0 | wi)
= Po(W.' + S < A.‘) = Go(Ai - W-‘)-
Note that when A; — W; < 0, this quantity is zero.
Again, if this h; satisfies the assumptions of Theorem 1
in L’Ecuyer (1990), an unbiased estimator of 8 Pg(Wi41 =
0)/99 is given by:

M(Ow) = 25Go(Ai=- W)
(‘%Go) (Ai — W)
+ go(Ai — W.’):—o(A.' -W)
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for Ai—W; > 0, and k{(8,w:) = 0 otherwise. In particular,
when § = A (and p is fixed), the right-hand-side of (15)
becomes g, (Ai — Wi)d(Ai — W;)/dA. Using these new h;
and k! in (14) yields a second SPA estimator. Sufficient
conditions for that second estimator to be unbiased can
be obtained as in L’Ecuyer and Perron (1990).

7 SURROGATE (OR INDIRECT) ESTIMA-
TION

Suppose that A and p represent respectively the av-
erage arrival rate and the average service rate (whether
or not the distributions are exponential). Then, if both A
and p are multipled by the same constant ¢, the expected
number of customers per busy cycle does not change, since
this just corresponds to changing the time scale by the fac-
tor c. Therefore, in that case, £(6) depends on 6 only via
p = A/p. From that observation, we can express £'(}) as
a function of £'(u), and vice-versa:

1yy — GEA[T] _ dEu[r]dudp 4,
V=" - 3w @

Using (15), any estimator of the derivative with respect
to the average arrival rate A can be transformed into an
estimator of the derivative with respect to the average
service rate pu, and vice-versa. Such indirect estimators
were studied in Vizquez-Abad and Kushner (1990), where
they were called surrogate estimators. For example, any
of the two SPA estimators defined in the previous section
can be used to estimate the derivative with respect to
either A or u. Furthermore, each of these two estimators
for A [resp., for p] can be transformed into an estimator
for u [resp., for A] by (15). This gives four SPA estimators
for the derivative with respect to A and another four with
respect to p.

8 NUMERICAL ILLUSTRATION WITH AN
M/M/1 QUEUE

To illustrate the behavior of the above estimators, we
take a simple M/M/1 queue with arrival rate A and ser-
vice rate u. We have Fi(z) = 1 — e™*%, fia(z) = Ae™?,
Gu(z) = 1 - €™, and gu.(z) = pe~"*. We want to
estimate £'()), the derivative with respect to A. We sim-
ulate that queue for n regenerative cycles and compute
each derivative estimator that we are interested in. Fur-
ther, we do r replications of that. The exact value of the
derivative £'()) for the M/M/1 queue can be computed
easily, which permits us to compare our estimations with
the true values:

(o) = Lf_,\;
iy def d
fp) ¢ ﬁE,‘[r]_z“_“—)‘),;



Estimation when IPA Does Not Apply

p 1/4 1/2 2/3 3/4
Exact derivative 0.4444 2.00 6.00 12.00
aver. ] s.d. aver. I s.d. aver. I s.d. aver. | s.d.
D-LR 0.444 | 0.035 | 1.987 | 0.168 | 6.051 | 0.582 | 12.163 | 1.446
S-LR 0.440 | 0.044 | 1.982 | 0.169 | 6.072 | 0.634 | 12.021 | 1.455
FD-RPA 0.437 | 0.078 | 1.976 | 0.249 | 5.843 | 0.531 | 11.416 | 0.893
A-RPA 0.445 | 0.014 | 1.990 | 0.085 | 6.015 | 0.366 | 12.071 | 0.796
SPA1 0.444 | 0.009 | 1.992 | 0.063 | 6.020 | 0.286 | 12.067 | 0.614
SPA2 0.446 | 0.012 | 1.994 | 0.074 | 6.011 | 0.324 | 12.073 | 0.683
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Table 1: Simulation Results For The M/M/1 Example.

The standard LR estimator (4) with § = X becomes
in this case

LR _ . 5‘} In fA(Ai) = (r/A - ZA-) . (16)

i=1 i=1
On the other hand, the standard LR estimator for the
derivative with respect to u is given by
T T
0
=) 5, meu(S) = (T/u -2 s.-) roan
=1 1=
An indirect (surrogate) estimator of the derivative with
respect to A is readily obtained by combining (15) and
(17).
When we take the derivative with respect to § = A,
for our first SPA estimator, we obtain hi(8,w:) = e~ *%

and
—e X Z S;,

JES:

' N =AX L Q{_)
B8, w:) = e (—X 2

where ®; {_1 < t | customer j is in the same busy cy-
cle as customer i }. The last equality above follows from
standard IPA arguments, as in Suri (1989) or Suri and Za-
zanis (1988), for example. For § = A, for the second SPA
estimator, we have h;(f,wi) =1 — e"‘m“(o Ai=Wi) and,

since Wi =3 o5} (S5 — 4;) and 94, /0N = —Aj /),

A — W,
h:(a,w.) — _F(A W)(_.____)

— B —m(Ai=Wi) ZA’

JEP;
when A; — W: > 0. When A; — Wi < 0, one has
h!(8,w;) = 0. The corresponding SPA estimators (12)
and (14) for £(9) and ¢'(f) can be computed easily in a
single simulation run.
If we take the derivative with respect to p, we obtain

by analogous calculations

-ax, 0Xi —AX;
h:(a,wi)——/\ X a =_ e ES"

JEP;

for the first SPA estimator and

hi(,wi) = 7AW N " 4,

JEP;

for the second one.
mators given by (14) can be used, together with (15), to
obtain surrogate estimators of the derivative with respect
to A. It turns out that for this particular M/M/1 ex-
ample, these two surrogate SPA derivative estimators are

The corresponding derivative esti-

exactly the same as the two direct SPA estimators devel-
oped in the previous paragraph. But this coincidence is
not always true in general.

Table 1 gives the results of our numerical experiments.
We took r = 100 replications and » = 10000 regenerative
cycles per replication. In all cases, A = 1, so that the traf-
fic intensity is p = 1/p. We performed simulations with
the following values of p: 1/4, 1/2, 2/3, and 3/4. For the
finite differences, we took A\ = 0.02. We have computed
estimators using the following methods: direct LR based
on equation (16) (D-LR), surrogate LR based on equation
(17) (S-LR), finite-difference RPA (FD-RPA), average in-
finitesimal RPA (A-RPA), and the two SPA estimators of
Section 6 (SPA1) and (SPA2). For each method and each
value of p, we give the average (aver.) of the 100 deriva-
tive estimations that we have obtained, and the sample
standard deviation (s.d.).
of the table, all estimators have been computed from the

Notice that for each column

same simulations, that is with common random numbers.
From the simulation results, one can see that our first
and second SPA estimators, in that order, are those that
perform the best. They are unbiased and have a lower
standard deviation than the other ones. Then, comes the
average RPA method. Finite-difference RPA has not only
more variance, but also significant bias for the value of
AX = 0.02 that we have chosen. A smaller value of AX
will reduce the bias, but then the variance will be still
higher. The LR methods have the highest variance.
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9 CONCLUSION

We have shown through an example how efficient per-
turbation analysis estimators can be built in situations
where straightforward IPA will not work. We have intro-
duced two new (efficient) SPA estimators for estimating
the derivative of the expected number of customers per
regenerative cycle in a GI/G/1 queue. For the exam-
ples that we have examined, these new estimators outper-
formed those that had been proposed previously for the
same problem. We took the GI/G/1 queue as an illustra-
tion, but our development can be generalized to different
performance measures and more general systems.
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