Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

DESIGNING EFFICIENT SIMULATION EXPERIMENTS

Barry L. Nelson

Department of Industrial & Systems Engineering
The Ohio State University
Columbus, Ohio 43210, U.S.A.

ABSTRACT

This tutorial describes basic principles for designing
statistically efficient simulation experiments and con-
trolling experiment error, including the use of ex-
ploratory experiments, assignment of random number
seeds or streams, and analysis of the results. Simula-
tion experiments that are performed to compare two
or more systems are emphasized.

1 INTRODUCTION

Stochastic simulations are experiments that provide
estimates of the performance parameters associated
with simulated systems. The estimates are almost
certainly wrong, in the sense that they do not equal
the true, unknown performance parameters. For this
reason every estimate should be accompanied by a
measure of i1ts potential error. The size of the error
is seldom known in advance, but it could be so large
that the estimates are not meaningful. Therefore, the
experimenter should control or design for the error,
as well as measure it.

This tutorial describes basic principles for design-
ing statistically efficient simulation experiments and
controlling experiment error. The focus is estima-
tor error, as opposed to modeling error (the simula-
tion model fails to represent the system of interest)
or numerical error (the loss of accuracy due to the
finite representation of numbers by computers). We
concentrate on simulation experiments that are per-
formed to compare the performance of two or more
simulated systems (e.g., to select the best performer
of k systems). More advanced references include
Bratley, Fox and Schrage (1987) and Law and Kel-
ton (1991); a more comprehensive reference at about
the same level is Nelson (1992), which is the basis for
part of this tutorial.

A certain amount of mathematical notation is nec-
essary. §2 contains two examples to make the nota-

126

tion concrete.

Let Y be a random variable that generically rep-
resents the output (sample performance) of a simu-
lation, and let y be the unknown expected value of
Y, p = E[Y]. In this tutorial u is the performance
parameter of interest. Suppose we want to compare
k different systems. To avoid confusion between the
real system and the model of the system represented
by the simulation, and for compatibility with statis-
tics textbooks, we call the k simulated systems design

points.
Let
Yh
Y,
Y = .
Y

be a k x 1 vector of outputs across all k design points;
that is, Y; denotes the sample performance from de-
sign point 7, and y; is the expected performance. We
are primarily interested in comparisons of the form
pi — pe, the expected difference in performance be-
tween design points ¢ and £. We assume that the re-
lationship among the k design points can be approx-
imated by the following general linear model (GLM):

Y=XB+¢ (1)

where X is k x p fixed design matriz, B is px 1 vector of
unknown constants, and € i1s a k x 1 vector of random
errors with expectation 0.

The portion of classical experiment design that ad-
dresses the specification of X is beyond the scope of
this tutorial. We emphasize the special case when
X = Iixk, the k x k identity matrix, and B8 =
(K1, 2, - -, px)’, which simplifies (1) to the one-way
analysis of variance model

Yi=pite (2)

for i = 1,2,...,k. For the purpose of this tutorial
ezperiment design includes the following:



Designing Efficient Experiments 1

1. Specifying the number of replications at each de-
sign point. We attach a second subscript, j, to
Y; or ¢; to indicate different replications; e.g., Yi;
denotes the output from jth replication at design
point ¢. The number of replications at a design
point is either m or n.

2. Specifying the length of each replication at each
design point, when it is controllable.

3. Assigning the pseudorandom numbers to each
design point.

2 EXAMPLES

There are two broad (not necessarily exhaustive)
classes of system performance parameters of interest:
those defined with respect to prespecified initial and
final conditions for the system of interest, and those
defined over a (conceptually) infinite time horizon.
Simulation experiments that estimate the former are
called terminating simulation experiments, while the
latter are called steady-state simulation experiments.

The experiment design for terminating simulations
always calls for multiple replications, and the length
of each replication is determined by the prespecified
initial and final conditions. The experiment design
for steady-state simulation may call for one or more
replications, and the length of each replications is a
design decision. Consider the following examples (the
first example is based on Nelson (1992)):

Example 1, terminating simulation: A small city
allows auto owners to renew their license plates by
mail, with each owner’s renewal taking place during
the month of their birth. The mail-in renewal appli-
cations are processed by a clerk. The rate of receipt of
applications increases steadily throughout the month,
but the load during all months is about the same.
Mail-in renewals that are postmarked after the 27th
day of the month are returned to the applicant with-
out being processed. The city is interested in deter-
mining the performance level the clerk must attain,
in terms of the expected time to process a renewal,
to prevent excessive processing delays. Uncertainty
in the system is due to the arrival dates of renewal
applications and the actual processing time for each
application. These input processes are described by
probability distributions based on data from a similar
city.

The simulation experiment will evaluate the ex-
pected average delay in processing applications dur-
ing a month. Thus, g, is the expected average delay
per month when the expected processing time per re-
newal is z; minutes, each month initially having no
applications to process and ending after processing

(8]
=1

the last application received on the 27th. Let Yj;
be the observed average delay in processing the ap-
plications received during the jth month when the
expected processing time is z; minutes. A func-
tional relationship among the design points is as-
sumed, namely

Yi; = Bo + Pizi + Paz? + €4
implying that p; = E[Y;;] = Bo+ f1zi+P22?. The de-

sign matrix for a single replication from each system
1s

1 10 100
X=1|1 15 225
1 20 400

which covers expected processing times ranging from
10 to 20 minutes. The design decision is the number
of replications at each of the k = 3 design points.

Example 2, steady-state simulation: A company
that provides an on-line data-base service wants
to evaluate five proposed computer architectures in
terms of their effect on the expected response time to
user requests for information (a shorter response time
is better). The five architectures constitute k = 5 de-
sign points. Uncertainty in the system is due to user
behavior: the actual log-on times of users, the lengths
of user’s sessions, and the types of queries users make.
These input processes are described by probability
distributions derived from data on the present com-
puter system.

The simulation experiment will evaluate the ex-
pected response time over a prolonged period of peak
load. Thus, y; is the steady-state expected response
time for design point ¢ under peak-load conditions.
No functional relationship among the design points
is assumed, so the one-way model (2) is appropriate
to describe the simulation output data, Y;;, the ob-
served average response time for design point i on
replication j. Design decisions include the length of
each replication (how long the system is simulated
at peak load) and the number of replications. Given
some constraint on computing budget or time avail-
able for experiments, the trade off is between many
short replications versus a few long ones.

3 RANDOMNESS IN SIMULATION

Uncertainty (“randomness”) in a simulation exper-
iment is derived from the pseudorandom numbers,
typically numbers in the interval (0, 1), that are dif-
ficult to distinguish from independent and identi-
cally distributed (i.i.d.), uniformly distributed ran-
dom numbers. A useful way to think about the
random numbers is as a large, ordered table, where



128

the number of entries in the table is often around
231 2 2 x 10° (small tables such as this appear in the
back of some statistics textbooks). Given a starting
point in the table, a simulation uses the pseudoran-
dom numbers in order until the experiment is com-
pleted. If the end of the table is encountered, then
numbers starting from the beginning of the table are
used. Most simulation languages do not actually store
the pseudorandom numbersin a table (they are gener-
ated by a recursive function as needed), but the table
of random numbers is a good physical representation
of how the simulation language works.

Although the (conceptual) table of pseudorandom
numbers i1s ordered, the order does not matter. As
long as the numbers are used without replacement,
they can be taken in any manner or starting from any
position in the table and still appear to be a sample of
11.d. random numbers. An important feature of most
simulation languages is that they permit control of
the pseudorandom numbers through seeds or streams.
The seeds or streams are nothing more than different
starting pointsin the table, typically spaced far apart.
For example, stream 1 might correspond to entering
the table at the 121, 567th random number.

The assignment of random number seeds or streams
is part of the design of a simulation experiment. All
subsequences within the (conceptual) table appear
to be 1.i.d. random numbers, so assigning a differ-
ent seed or stream to different design points guaran-
tees that the outputs from different design points will
be statistically independent. Similarly, assigning the
same seed or stream to different design points induces
dependence among the corresponding outputs, since
they all have the same source of randomness. Con-
trolling the dependence between design points is the
primary reason for the existence of seeds or streams.

Many textbook experiment designs (specifications
of X in (1)) assume independent results across design
points. To conform to the assumptions of these de-
signs we must assign different seeds or streams to each
design point. Later we argue that, in many cases, we
do not want independence across design points. In
fact, we want the outputs across design points to be
as strongly positively dependent as possible.

Two closing comments about seeds and streams:
Assigning different seeds or streams to different de-
sign points does not guarantee independence if, say,
we assign stream 1 to a design point, but use so many
random numbers that we begin taking numbers from
stream 2, which is assigned to another design point
(remember that the streams are just starting points
in an ordered table). If independence is critical, it
is worthwhile to know the spacing between seeds or
streams in a simulation language, and to make a

Nelson

rough estimate of the number of pseudorandom num-
bers needed at each design point.

On the other hand, it is typically not necessary to
assign different seeds or streams to different replica-
tions at a single design point in order to obtain inde-
pendent replications. Nearly all simulation languages
begin subsequent replications using random numbers
from where the previous replication finished, imply-
ing that different replications use different random
numbers and are therefore independent.

4 EXPERIMENT PLANNING

Designing a simulation experiment that controls esti-
mator error requires obtaining some estimate of that
error. In most cases this means that a simulation ex-
periment must be performed in (at least) two stages:
An ezploratory erperiment and a designed ezperi-
ment. The purpose of the exploratory experiment is
to provide information for planning the designed ex-
periment, which in turn provides the comparisons of
interest. There is a vast literature on formal methods
for multiple-stage experiments; the ideas presented
here are statistically sound, but informal.

The primary reason to perform the exploratory
experiment is to assess the potential error in the
simulation estimates, and to use that assessment to
determine the number, and possibly the length, of
the replications in the designed experiment to re-
duce the error below an acceptable level; this topic
is discussed in §4.1 and §4.3. The exploratory ex-
periment may also be used as a preliminary check
on approximations—such as normality of the output
data and equality of the output variance across de-
sign points—that are common in statistical-analysis
procedures; this topic is discussed in §4.2.

4.1 Number of Replications

We focus on determining the number of replications
needed, assuming that a multiple-replication design
will be used, and discuss the problem of determining
the length of the replications in §4.3.

Let m denote the number of replications in an ex-
ploratory experiment at a design point. The value of
m should strike a balance between obtaining useful
information and not expending a significant portion
of the available time or money for experiments; it
must be at least 2, and 10 or more if possible. At
least two design points, say i and ¢, should be consid-
ered to insure that system behavior is not markedly
different at different design points.

From the m replications, compute a point estimate
of the expected difference in performance between the



Designing Efficient Experiments 129

two design points, p; — pe. Let p;— p, denote the
estimator. Also compute an estimate of the absolute
errorof ,u,-?pg; the absolute error estimator, denoted
a(m), is typically of the form

~ _ a(m)

a(m) = ¢(m) i
where ¢(m) is a constant that may depend on m and
o(m) is an estimator of the standard deviation of the
difference between design points i and ¢, denoted o.
An example is given below. Notice that ¢ is a prop-
erty of the simulation and not a function of m; we
exploit this fact to control error.

In some contexts it is desirable to control the rel-
ative error of the estimates rather than the absolute
error. The relative error of p; — y; is the absolute
error as a fractiog\of Wi — pe; 1t can be estimated by
7(m) =a(m)/|pi — pel-

The error estimator @(m) or 7(m) can be used to
approximate the error that will be obtained at n > m
replications by assuming that the estimates of & and
ui — p¢ will not change much, and solving for the n
required to obtain a prespecified level of error. To
obtain an absolute error less than a, set

To obtain a relative error less than r, set

~ 2
n= [(———C(m)f(\m) ) J +1.
o | — el

The designed experiment then specifies n — m addi-
tional replications for each design point considered in
the exploratory experiment, and n replications for de-
sign points not considered in the exploratory experi-
ment or for all design points if it is more convenient to
generate new outputs rather than reuse outputs from
the exploratory experiment. If the error actually re-
alized in the designed experiment is too far from the
target, then a new design can be constructed in the
same manner.

Consider example 2, and suppose that the expected
response time for computer architecture 4, y;, 1s es-
timated by the sample mean ¥; = 37, ¥ij, so that
pi — pe = Yi—Y,. One might want to estimate the ex-
pected difference in response time to within an abso-
lute error of, say, 40 milliseconds, or within a relative
error of, say, 0.05 (5% of the true difference).

Let

S%(m) = 1 i()/z‘j -Y)? (3)

j=1

be the sample variance across replications at de-
sign point i. Then, if the design points are sim-
ulated independently (i.e., different random num-
ber seeds or streams for each architecture), then
o(m) = /S?(m)+ S?(m). A measure of the ab-
solute error is the confidence-interval width a(m) =
ti_a/2,2m-20(m)/y/m, where t;_4/2 9m_2 is the 1 —
a/2 quantile of the ¢ distribution with 2m — 2 de-
grees of freedom. Notice that &(m) is a measure of
the standard deviation of the difference between de-
sign points ¢ and £, which is the deviation of interest
when making comparisons. Later we describe how to
modify this estimate if common seeds or streams are
employed across design points.

4.2 Data Aggregation (Batching)

At design point ¢, suppose we have n replications pro-
viding outputs Y;1, Yi2, ..., Yin. The following aggre-
gation of the data is sometimes useful: Set

b

- 1

Yin = 3 z:lY(h—1)b+j
J:

for h = 1,2,...,¢, so that n = bg. Simply stated,
Y, is the sample mean of the “batch” of out-
puts Yi (h—1)b41,- - -, Yi hd- There are several reasons
to consider basing statistical analysis on the batch
means Y, . ..,}—Qg rather than the original outputs

)/ily"‘)}/in:

e The batch means tend to be more nearly nor-
mally distributed than the original outputs, since
they are averages. This property is useful if
the statistical analysis will be based on normal-
distribution theory.

¢ By using different batch sizes, b, at different de-
sign points, the variances of the batch means
across design points can be made more nearly
equal than the variances of the original outputs;
equal variances is a standard assumption be-
hind many statistical procedures used for com-
parisons.

For example, suppose that S?(n) and S?(n) are
the sample variances at design points i and £ of
the original outputs as defined in (3). If S?(n) >
S?(n), then a batch size of b ~ S?(n)/S?(n) for
design point 7, and a batch size 1 for design point
£, will cause the batch means from 7 and ¢ to
have approximately equal variance. Of course,
the same will be true for batch sizes cb and c,
respectively, for any positive integer c.

¢ Saving all of the batch means may be possible
when it 1s impossible or inconvenient to save all



130

of the original outputs. The original outputs are
often aggregated into only a sample mean and
variance. Yet it is sometimes useful to have the
“raw” data available, not just summary statis-
tics.

Surprisingly, it not necessary to maintain a large
number of batch means, g, even if the number
of replications, n, is large. One way to see this
is to look at the critical values of the ¢ distri-
bution: t0.975‘30 = 204, while t0‘975'°° = 196, a
very small difference. Therefore, batching a large
number of replications into 30 batch means will
have little effect on statistical analysis based on
the ¢ distribution, but it may be much easier to
save 30 batch means as opposed to the all of the
replication results.

If the number of replications in the exploratory ex-
periment, m, is large enough, then the relative batch
sizes can be determined during the exploratory ex-
periment by examining the variances of the outputs.
The outputs in the designed experiment can then be
aggregated as they are collected. Even if inequal-
ity of variances is not an issue, the outputs from the
designed experiment can be batched as long as the
number of batches does not become too small.

4.3 Length of the Replications

Replication length is an issue in steady-state simula-
tion due to the presence of initial-condition bias. The
detection and elimination of initial-condition bias is
outside the scope of this tutorial; see Law and Kelton
(1991). However, the decision to perform a single or
a multiple-replication experiment is based on the fol-
lowing judgement: If the initial-condition bias at each
design point is well understood, and the simulation ef-
fort required to eliminate it is very small relative to
the time or money available for experiments, then a
multiple-replication design is preferred. Otherwise a
single-replication should be used.

If a multiple-replication design is employed, then
the replication length should be much longer than
the initial-transient period (say 20 times longer to be
concrete). The number of replications can be deter-
mined as described in §4.1.

If a single-replication design is employed, then the
length of the replication is used to control the estima-
tor error. The tutorial by Goldsman (1992) elsewhere
in this volume describes methods for error estimation
in steady-state simulation. One of those methods is
batching, as described in §4.2, except that the batch
means are formed from outputs within a single reph-
cation, rather than across multiple replications. The

Nelson

central idea is to make the batch size large enough
so that the batch means are nearly independent, and
can therefore be treated as independent replications.
All of the guidelines in §4.1-§4.2 then apply to the
batch means.

5 COMMON RANDOM NUMBERS

In this section we argue that it is often useful to assign
the same random number seeds or streams to all of
the design points; this technique is called common
random numbers (CRN). The presentation will be in
terms of a multiple-replication experiment, but the
ideas apply to a single-replication experiment when
batch means play the role of replications.

The intuition behind CRN is that a fairer compar-
ison among design points is achieved if the design
points are subjected to the same experimental con-
ditions, specifically the same source of randomness.
For instance, in example 2 it seems fair to compare
the five computer architectures under the same user
load (log-on times, length of sessions, and types of
queries). CRN can insure this.

The mathematical justification for CRN 1is as fol-
lows: Suppose, in example 2, that the sample mean
response time, Y;, is used to estimate the unknown
expected response time, p;. Then for design points ¢
and ¢, the (unknown) standard deviation ¢ is

o = +/Varl¥; - Y]

= /Var[Yi] 4 Var[Y;] — 2Cov[Y;, Y¢]

where Var denotes variance and Cov denotes covari-
ance. If different seeds or streams are assigned to
design points ¢ and ¢, then Cov(Y;,Y;] = 0; if com-
mon seeds or streams are assigned then frequently
Cov[Y;, Y] > 0, reducing o.

Perhaps it is less obvious how example 1—in which
we fit a GLM (1) rather than directly estimating ex-
pected performance—will benefit from CRN. For ease
of explanation, suppose we fit the simplier model
z’,-j = Bo + Bizi + €i; and obtain estimates 3, and
B1. Then an estimator of the expected difference in
performance between design points 7 and ¢ is

,U.'/—\/u = Bo + 51-‘6.' - (Eo + .511'() = BI(I:' — Iy).

Since z; and z, are fixed design points, 51 determines
the estimated difference between design points ¢ and
¢, or for that matter any other two values of z. There-
fore, CRN can be expected to reduce the variance of
P11, and more generally reduce the variance of all of
the slope terms in the GLM; it does not typically re-
duce the variance of the intercept term, ﬁo.



Designing Efficient Experiments 131

The effect of CRN can be enhanced by synchro-
nizing the random numbers, which means forcing the
random numbers to be used for the same purpose at
each design point. The primary technique for achiev-
ing synchronization is to assign a different seed or
stream to each random input process, and then to
use the same collection of seeds or streams across all
design points. In example 1, this means assigning a
stream to the application arrival process and a dif-
ferent stream to the application processing process.
When common streams are used across design points,
the same random numbers will generate arrivals and
processing at each one.

Sometimes synchronization is facilitated by gener-
ating entity/transaction attributes at the time the
entity/transaction is created. For instance, in exam-
ple 2 the entire sequence of queries that a user makes
could be generated when the user logs on, rather than
generating each new query as the previous query is
completed.

One must also take care to synchronize the random
numbers across replications. To be specific, replica-
tion 2 of design points ¢ and £ should both begin with
the same random numbers. This may not happen
automatically, since replication 1 of design point ¢
may require a different quantity of random numbers
than replication 1 of design point £. The best way
to insure that all replications across all design points
begin with the same random numbers is simulation
language dependent. If a large number of seeds or
streams can be created, then one approach is to as-
sign different seeds or streams to each replication.

The exploratory experiment can be used to verify
that CRN is having the desired effect by estimating
the covariance between design points using

Cie(m) = — Z(}

The covariance terms should be positive; if they are
negative then CRN may inflate variance and should
not be used. The estimate of o used for planning the
designed experiment, o(m), should also reflect the use
of CRN; see §6 below.

Yl] _Yl) (4)

6 OUTPUT ANALYSIS

Analysis of the exploratory experiment provides plan-
ning information for the designed experiment. Anal-
ysis of the designed experiment provides the com-
parisons of interest. In this section we concentrate
on output analysis under CRN. When the design
points are simulated independently, standard statis-
tical methods apply. See, for example, Law and Kel-

ton (1991), and the tutorial by Goldsman (1992) else-
where in this volume. The presentation is in terms
of the designed experiment, but all of the output-
analysis procedures can also be used with the ex-
ploratory experiment.

Suppose we make n replications at each design
point. If X is the design matrix for one replication
across all k design points, then the design matrix for
all n replications is the kn x p matrix

X
- X
X =
X
Organize the outputs across all n replications into the
kn x 1 vector
? = (YII)YQI) .. ')},’Cl) .. '1}/1n)Y2n) s 'lyrkn)’-
Then a point estimator for B is the ordinary-least-
squares (OLS) estimator

~

B=(%%)X¥

which reduces to B = (Y1,Y,,...,Y:)" when the one-
way model (2) applies (X = Ijxk).

The OLS point estimator 1s appropriate whether
or not we use CRN, but the associated statistical
analysis 1s affected by CRN. Unfortunately, statisti-
cal analysis under CRN 1is still an open problem. In
the next two subsection we discuss exact and approx-
imate methods.

6.1 Analysis for the One-Way Model

When there is no functional relationship among the
design points, as in example 2, the one-way model (2)
is appropriate, and the natural estimator for the ex-
pected difference in response time between design
points i and £, p; — e, is Y; — Y,. Based on n repli-
cations, the standard deviation of the difference is
estimated by

) = \/S2(n) + 53(n) — 2Cie(n)

where S?(n) is the sample variance from system i as
defined in (3) and Cj¢(n) is the sample covariance as
defined in (4). If the output data are nearly normally
distributed, then a (1 — a)100% confidence interval

for p; — pe 1s

(n)

v &

Y= Yetti_a/an-1




This confidence interval can also be used for experi-
ment planning in the presence of CRN.

Difficulties arise in extending the analysis above to
all d = k(k — 1)/2 differences p; — pq, for all i # ¢,
simultaneously. A standard approach is to form each
confidence interval at level 1 — a/d, rather than 1 —«,
which guarantees that the overall confidence level for
all d intervals is at least 1 — o by the Bonferroni in-
equality. Unfortunately, the benefit we hope to obtain
from CRN is shorter confidence intervals, and this
procedure is so conservative that it may overwhelm
the benefits of CRN, especially if k is large.

An approximate procedure, that the author has
shown to be robust, is to form the following set of
confidence intervals

G(n)
Y; - Yliqk(k G

for all ¢ # ¢, where q,lc},‘:’_l)(n_l) is the 1 —a quantile of
the Studentized range distribution with parameter k
and (k — 1)(n — 1) degrees of freedom (Hochberg and
Tamhane 1987), and &(n) is the modified standard
deviation defined by

Here i\’
all demgn points on replication j, and Y =
2, 1 2_3=1 Yij/(kn), the sample mean of all the out-
puts. These confidence intervals can also be used for
experiment planning.

Ef 1 Yi;j/k, the sample mean across

6.2 Analysis for the GLM

Consider estimating the GLM proposed in example 1.
Many procedures exist for analysis of a GLM under
CRN, but they are complex and depend on a host
of conditions. Here we present a simple procedure
proposed by Kleijnen (1988). This subsection as-
sumes that the reader is familiar with standard anal-
ysis techniques for the GLM when the design points
are independent.

Suppose we make n replications at each design
point. Let Z) (n) be the k x k matrix with 1, jth
element S2(n), for i = j, and C;j(n), for i # j. In
other words, ﬁy(n) 1s an estimtor of the variance-
covariance matrix of Y based on n replications. Klei-
Jnen proposes estimating the variance-covariance ma-
trix of 3 by

S5m) == (XK) 7 X (8, (m) % (%X) .

Nelson

Planning and analysis are based on the elements of
Z‘E(n). For example, an approximate (1 — a)100%
confidence interval for Gy is

EZ + li—a/2,n-1 at(n)

where @¢(n) is the square root of the ¢th diagonal
element of Eﬁ(n).

ACKNOWLEDGEMENT

This work was partially supported by NSF Grant
DDM-8922721.

REFERENCES

Bratley, P., B. L. Fox and L. E. Schrage. 1987. A4
guide to simulation. Second edition. New York:
Springer-Verlag

Goldsman, D. 1992. Simulation output analysis. In
Proceedings of the 1992 Winter Simulation Con-
ference, ed. J. J. Swain, D. Goldsman R. C. Crain,
and J. R. Wilson, in press. Institute of Electrical
and Electronics Engineers, Washington, D.C.

Hochberg, Y. and A. C. Tamhane. 1987. Multiple
comparison procedures. New York: John Wiley.

Kleijnen, J. P. C. 1988. Analyzing simulation exper-
iments with common random numbers. Manage-
ment Science 34: 65-74.

Law, A. M. and W. D. Kelton. 1991. Simulation
modeling & analysis. New York: McGraw-Hill.
Nelson, B. L. 1992. Statistical analysis of simulation
results. In Handbook of industrial engineering (G.

Salvendy, ed.). New York: John Wiley.

AUTHOR BIOGRAPHY

BARRY L. NELSON is an Associate Professor in
the Department of Industrial and Systems Engineer-
ing at The Ohio State University. His research inter-
ests are experiment design and analysis of stochastic
simulations. He is President of the TIMS College on
Simulation and an Associate Editor for Operations
Research.



