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ABSTRACT

Simulated annealing algorithms for optimization over
continuous spaces come in two varieties: Markov chain
algorithms and modified gradient algorithms. Unfor-
tunately, there is a gap between the theory and the
application of these algorithms: the convergence condi-
tions cannot be practically implemented. In this paper
we suggest a practical methodology for implementing
the modified gradient annealing algorithms based on
their relationship to the Markov chain algorithms.

1 INTRODUCTION

Simulated annealing is a popular approach to global
optimization of functions with multiple local minima.
One type of annealing algorithm for continuous optimi-
zation involves simulating a Markov chain using a gen-
eralized Metropolis (or related) method. We refer to
these algorithms as Markov chain annealing algorithms
(MCAA’s). There is a large amount of theoretical
analysis and practical methodology developed for the
MCAA'’s (Vanderbilt and Louie, 1984; Bohachevsky et
al., 1986; Corana et al., 1987; Brooks and Verdini,
1988; Press and Teukolsky, 1991; Gelfand and Mitter,
1992). However, the feasibility of MCAA'’s for high-
dimensional problems is questionable.

Another type of annealing algorithm for continu-
ous optimization involves modifying gradient-type
search algorithms. Let U(®) be a smooth cost function
on RP. A standard gradient algorithm for finding a
local minimum of U(®) (and hence a global minimum if
U(*) is convex) is given by

Zin =7, —UVU(Z)

where | is a step-size parameter. A modified gradient
algorithm for finding a global (or near global) minimum

494

of U(*) is given by
Xi = Xy — KVUX ) + V2T W,

where (W, } is a white Gaussian noise sequence and T
is a "temperature” parameter which is slowly decreased
as the algorithm proceeds. The idea behind this algo-
rithm is that by artificially adding in the noise term (via
Monte Carlo simulation) it is possible to escape from
strictly local minima. We refer to this modified gradient
algorithm as a gradient annealing algorithm (GAA).
Now there is some theoretical analysis developed for
the gradient annealing algorithm (Kushner, 1987; Gel-
fand and Mitter, 1991b,c), but no practical methodology
that we are aware of. On the other hand, there may be
some hope of using GAA for high-dimensional prob-
lems with smooth well-behaved cost functions, as it
attempts to exploit the smoothness by its use of deriva-
tives. The goal of this paper is to use some theory from
Gelfand and Mitter (1991a) relating the MCAA and
GAA, and some practical methodology from Johnson et
al. (1989) for the MCAA, to develop a practical metho-
dology for GAA.

2 MARKOV CHAIN ANNEALING ALGO-
RITHMS

Most of the theory and application of MCAA deals with
discrete (combinatorial) optimization. The literature on
MCAA'’s for continuous optimization is by and large a
straightforward generalization of the discrete case. Itis
this point of view we discuss in this section. The dis-
cussion is very brief and the reader is referred to the
literature for more details.

Let U(*) be a cost function on RP. We wish t0
find an element of RP which minimizes U(*). A gen-
eral description of the MCAA for solving this problem
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is as follows (we only consider the Metropolis pro-
cedure here):

Given a current solution x € RP generate a candidate
solution y € RP

If U(y) < U(x) then accept y as the next solution.

If U(y) > U(x) then accept y as the next solution with
probability exp(—(U(y) — U(x))/T); (otherwise the next
solution is the current solution x).

Here the candidate solution is usually a probabil-
istically generated perturbation of the current solution.
Also, the "temperature” parameter T is slowly decreased
as the algorithm proceeds, making transitions to higher
cost states less likely. The algorithm stops subject to
some termination criterion.

The MCAA can be precisely formulated as a con-
tinuous state Markov chain as follows. Let g(x,y) be a
transition probability density from x to y (x,y € RP);
q(x.y) is a probability density for the candidate state y
given the current state x. The continuous state anneal-
ing chain {Y,) (at a fixed temperature T) has 1-step
transition probability density from x to y given by

P(T.x,y) = s(T,x,y)q(x,y) + m(T,x)&(y - x) (2.1)

where

[Uy) - U@
T

S(TYX,Y) =exp [—

and m(Tx) is chosen to provide the correct normaliza-
tion. Here [*]* denotes positive part and &(*) is a
Dirac-delta function. For a fixed temperature T this
annealing chain (Y, )} has a Gibbs equilibrium distribu-
tion with density function

1
Z(T)

Ux)
T

’

TD(T,X) =

exp

ZT)=[exp [— !,(rﬂ]dxk ),

and as the temperature T tends to zero we get n(T,*)
converging to a density n’(*), which is concentrated on
the global minima of U(*). If the rate of temperature
decrease is slow enough, then (Y.} remains near the
equilibrium distributions and also concentrates on the
global minima for k large (Gelfand and Miter, 1992)
(we note that the proof of convergence in the continu-
ous case natrally requires many more technical
assumptions and details than the discrete case).

Unfortunately, there is a large gap between the
theory and application of the MCAA. The main prob-

lem is that the theoretically appropriate rates of
decrease for the temperature are far too slow for practi-
cal implementation. In practice, one needs a tempera-
ture schedule, a candidate generator and a termination
criterion which achieve desirable tradeoffs between
complexity and performance.

A practical methodology for continuous state
MCAA’s can be adopted with relatively few changes
from the methodology for discrete state MCAA's
developed by Johnson et al. (1989) (refinements of this
latter methodology form the basis for most implementa-
tions of MCAA'’s in both continuous and discrete state-
space). A key quantity in this methodology is the
acceptance probability P4 (T) which is estimated by

NA(T)
N(T)

where N, (T) is the number of moves accepted, and
N(T) is the number of moves attempted, at temperature
T. Although there is some motivation for allowing
N(T) to increase with decreasing T, the experiments by
Johnson et al. (1989) suggest that there is no real advan-
tage to doing so, and hence N(T) is fixed at some
number N. The methodology proceeds by making this
fixed number of iterations (attempted moves) at each of
a sequence of geometrically decaying temperatures, and
the initial and final temperatures are selected by requir-
ing that the acceptance probability be specified values.
For termination in the discrete case it is also required
that the running cost for the best solution has not
decreased over the S previous temperature values; in the
continuous case considered here we modify this to only
require that the running cost for the best solution has not
decreased by more than a small threshold. A summary
description of the algorithm is given below.

PA(T) =

(22)

Markov chain annealing algorithm methodology

Input parameters: p, (initial acceptance probability), pg
(final acceptance probability), p (geometric ratio in tem-
perature schedule), N (number of iterations at any tem-
perature), € (termination threshold)

1. Find initial temperature T, such that PA(To) = Po
(PA(T,) given by Equation (2.2)).
Setj=0.

3. Run the annealing chain N iterations at tempera-
ture T; = p’Tp

4. Let Y] be the best solution found through tempera-

If PA(T;) s pr and U(Y;) 2 U(Y[5) - €
then terminate the search and output Y; and U(Y])
else set j=j+ 1 and goto 3. O
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Although there have been some successes
reported with MCAA’s of the general type described
above, it has been observed that the method is very
inefficient for high dimensional problems, essentially
because it does not exploit the smoothness of the cost
function. In the next section, we discuss the GAA
which may overcome this inefficiency in some prob-
lems.

3 GRADIENT ANNEALING ALGORITHM

Let U(*) be a smooth cost function (at least C2) on RP.
We wish to find an element of RP? which minimizes
U(®). Here we consider GAA as an alternative to the
MCAA described in Section 2.

The GAA (with a fixed step size |1 and tempera-
ture T) is given by the following stochastic recursion

Xin = X — VUK, ) + 2Tu W, (3.1

where {W,} is a standard D-dimensional white Gaus-
sian noise sequence, artificially added in (via Monte
Carlo simulation) to try to avoid getting trapped in local
minima, and the temperature T (and possibly the step-
size W) is slowly decreased as k gets large. The asymp-
totic (large-time) behavior of GAA and MCAA are
similar. For fixed temperature T and small step-size p
the process {X, } nearly has a Gibbs equilibrium distri-
bution with density function n(T,*), and as the tempera-
ture T tends to zero we get n(T,*) converging to a 1" (*)
which is concentrated on the global minima of U(e). If
the rate of temperature and step-size decrease are
chosen appropriately, then (X,] remains near the
equilibrium distributions and also concentrates on the
global minima for large k (Kushner, 1987; Gelfand and
Mitter, 1991b,c).

GAA is plagued by the same gap between theory
and application as the MCAA’s. Theoretically
appropriate rates of decrease for the temperature
schedule are too slow for practical implementation, and
no results are available concerning the important case of
fixed step-size which by analogy with standard gradient
algorithms is necessary for rapid convergence. In prac-
tice one needs a temperature schedule, a step-size
(assumed known and fixed here) and a termination cri-
terion which achieve desirable tradeoffs between com-
plexity and performance. Practical implementation of
GAA appears not to have received any attention in the
literature.

We shall suggest a practical methodology for
GAA based on the methodology for MCAA'’s discussed
in Section 2, and the relationship between GAA and
MCAA which we shall elaborate on below. We shall
show that GAA and a certain class of MCAA interpo-

lated into continuous time (with step-size/interpolation
interval p) both have a diffusion limit (as p — 0), and
these diffusion limits are linearly time-scaled versions
of one another. Hence by taking into account the
appropriate time-scaling, we can use the MCAA metho-
dology as a basis for a GAA methodology. An impor-
tant feature of this approach is that it allows us to impli-
citly associate the idea of acceptance probability with
GAA - a critical quantity in developing temperature
schedules and initialization and termination criterion for
most practical annealing schemes.

3.1 Diffusion Limits for MCAA and GAA

We first formulate a MCAA which has the appropriate
structure and scaling to admit a diffusion limit. Refer-
ring to the general version of the MCAA in Section 2
we consider here a transition density q(®,*) which
corresponds to selecting a coordinate direction at ran-
dom, and then making a Gaussian perturbation along
that coordinate. Let x; denote the i-th coordinate of x
e RP. We choose

D
4xy) = = ENGL.aEITT80, - %) (32)
i=1 i

where N(m,c?)(*) denotes a (scalar) Gaussian density
with mean m and variance 62. Note that the variance of
the Gaussian perturbation along the selected coordinate
is o where o does not depend on T (so that g(*,*) does
not depend on T) and is to be specified. Let (Y.} be a
Markov chain with 1-step transition density p(T,*,*

given by Equations (2.1) and (3.2). Interpolate
(Y. =Y}: k = 0,1,...} into a continuous-time process
{Y*(t): t20) by

YHO =Y,  te [ku,k+Dp), k=0,1,...

It can be shown (Gelfand and Mitter, 1991a) that Y*(*)
has a diffusion limit, i.e., Y*(*) - Y() as p 4 0 (in
law), where Y(*) satisfies the Ito equation

dy() = - 5;’—DVU(Y([))d: A\ /% dv()

and V() is a standard D-dimensional Wiener process.
Next, consider the GAA (X, ) given by Equation
(3.1). Interpolate (X, =X}: k = 0,1,.) into a
continuous-time process {X*(t): t2 0} by
Xt =Xt, te [ku,k+)p), k=0,1,...

It is easy to show that X"(*) also has a diffusion limit,
ie, X*(*) > X(*) as pd0 (in law), where X(*)
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satisfies the Ito equation

dX(t) = —VUX(D)dt + V2T dW(1)

and W(*) is a standard D-dimensional Wiener process.

Now consider the process defined by linearly
scaling time by a factor B > 0 in the process X(*):

X(® = X(Bo)
By standard calculations i((*) satisfies the Ito equation
dX(t) = -BVUX()dt + V2TB dW ()

where W(') is a standard D-dimensional Wiener pro-
cess. From the (assumed) uniqueness of the Ito equa-
tion solution, it is seen that if we take

[0

B=B(D =%

then Y(¢) = ).((0) (in law), i.e., Y(*) is a linearly time-
scaled version of X(*), with scale-factor B(T) depending
inversely on the temperature T.

3.2 Toward a Methodology for GAA

In view of the limit diffusion behavior exhibited by both
GAA and MCAA, we have that under suitable condi-
tions, GAA is close to a linearly time-scaled version of
MCAA. This suggests that we can use the MCAA
methodology to guide the GAA methodology by
correcting for the scaling (this is not to say that GAA
and MCAA perform the same; see the discussion in
Section 4).

The idea is the following. Suppose we run the
MCAA (Y, for N iterations at temperature T, and con-
sider the GAA (X, ) also at temperature T. Then since
the limit diffusion Y(*) for (Y.} is a linearly time-
scaled version of the limit diffusion X(*) for {X,} with
scale factor B(T), the suggestion is to run the GAA
(X, ) for N(T) = B(T)N iterations at temperature T to
compensate for the time scaling. Now we still need to
choose the parameter o in the variance of the MCAA.
We do this by choosing B(Tp) =1, i.e., we choose the
GAA and MCAA to run at the same time scale at the
initial (high) temperature value T, (this choice is some-
what arbitrary but avoids introducing additional param-
eters). Hence a.=2T,D and so B(T)=To/T and thus
N(T) = (To/T)N, and we run the GAA (X, ) for

Nj = p-j No

iterations at temperature T; = p'T,. From a practical

point of view, we may impose a ceiling on the number
of iterations the GAA can make at any temperature.

The basic structure of the MCAA methodology
now carries over to a GAA, except that the MCAA uses
a fixed number of iterations at each of a geometrically
decreasing sequence of temperatures, while the GAA
uses a geometrically increasing sequence of iterations at
a geometrically decreasing sequence of temperatures.

To apply the MCAA methodology to GAA it is
desirable to find a good estimate of the acceptance pro-
bability, which is used to determine the initial and final
temperatures. Clearly, it is not desirable to estimate the
acceptance probability via a Monte Carlo simulation of
a MCAA (in addition to the GAA). Now in view of the
limit diffusion analysis, the appearance of the gradient
term in the GAA can be viewed as a local approxima-
tion in a certain MCAA. This approximation is possible
because of the (assumed) smoothness in the cost func-
tion and the smallness of the step size, and should result
in significant computational and performance advan-
tages for GAA. We shall next discuss how to make
some other local approximations in the MCAA to facili-
tate estimation of the acceptance probability, which
should make for more efficient determination of the ini-
tial and final temperatures.

The acceptance probability at temperature T is
given by
PA(T) = [r(T,x)P(T | x)dx

where

PACT %) = [s(T.x,y)q(x,y)dy

is the conditional probability of accepting a candidate
move given the current state is x. We develop an
approximation to P,(T) as follows. Substituting for
q(*,*) from Equation (3.2) and setting a. = 2TD we can
write

D
PA(TIX) = = SPACTIx.i)
i=1

where
Po(TIx,0) = [s(T,x,y)NGx;, 2ToDi)()TT8(; - x;)dy
Jwi

is the conditional probability of accepting a candidate
move given the current state is x and coordinate i is
selected for perturbation. Fix T, x and i for the moment
and let



498 Gelfand, Doerschuk, and Nahhas-Mohandes

X= (X1 s X Yir Xisls - - - 1 XD)
Then

PA(TIx,i)=fexp -M]Nmmmxyi)dm

.

We estimate P, (T |x,i) by

PAT|x,0) = [exp =

( [Uh<x)(yi-xi>+U1,,‘(x)(yi—xifm*]

.

* N(x;,2ToDp)(y;)dy;

It is possible to work out expressions for }3A(T Ix,i) in
terms of the exponential and error functions. Finally we
estimate P, (T) by

p LS5, (TIX 33
PA(T)=W£PA(T| x) (3.3)

~ DA
BACTIX) = = SPACTIXD)
i=1

where the average in the first equation is computed over
the N(T) iterations of GAA at temperature T.

A summary description of the proposed metho-
dology for the GAA is given below.

Gradient Annealing Algorithm Methodology

Input parameters: po (initial acceptance probability), pr
(final acceptance probability), p (geometric ratio in tem-
perature schedule), Ny (number of iterations at initial
temperature), € (termination threshold)

1. Find initial temperature T, such that P,(T,) = po
(P4 (T,) given by Equation (3.3)).
Setj=0.
Run the modified gradient algorithm N;=p~N
iterations at temperature T; = p' Ty

4. Let X; be the best solution found through tempera-
ture T;
If PA(T;) < p; and U(XI)ZU(X}-s)—E. .
then terminate the search and output X; and U(X;)
else set j = j+1 and go to 3. O

4 CONCLUSIONS

In this paper we have developed a methodology for

GAA based on the relationship between GAA and
MCAA. The idea here is that GAA and a certain
MCAA have diffusion limits which are linearly time-
scaled versions of each other, which suggests that a
GAA methodology can be obtained from a MCAA
methodology by correcting for the time-scaling. This
approach allows us to associate the idea of acceptance
probability with GAA, a quantity which plays a critical
role in temperature schedules for most practical anneal-
ing schemes. We also show how to make some local
approximations which facilitate better estimation of the
acceptance probability.

The experimental evaluation of the proposed
GAA methodology is currently being undertaken. One
interesting comparison would be between GAA and
MCAA. Our intuition is that GAA will do a better job
of finding a global minimum than MCAA for
sufficiently smooth, well-behaved cost functions. For
this to make sense, the implicit assumption that we are
making is that GAA and MCAA are close enough to
their diffusion limit to have a similar methodology (i.e.,
structure of their temperature schedule and termination
criterion), but far enough from their diffusion limit to
have distinctly different performance on certain prob-
lems.
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