Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

DESIGN AND IMPLEMENTATION OF A HIGHLY REUSABLE MODELING AND
SIMULATION FRAMEWORK FOR DISCRETE PART MANUFACTURING SYSTEMS

Hemant C. Bhuskute
Manoj N. Duse
Jagannath T. Gharpure
David B. Pratt
Manjunath Kamath
Joe H. Mize

Center for Computer Integrated Manufacturing
Oklahoma State University
Stillwater, Oklahoma 74078, U.S.A.

ABSTRACT

This paper describes ongoing research in the area of
"Advanced Modeling Methodologies for Simulation of
Complex Discrete Part Manufacturing Systems” in the
Center for Computer Integrated Manufacturing at
Oklahoma State University. We focus on presenting
the design and implementation details of a modeling
and simulation environment under development. First,
we briefly describe the concept of model reusability and
then show how the concept of separation of physical,
information, and control elements of a model can lead
to model reusability. Next, we outline the structure of
our modeling and simulation environment and discuss
the implementation of this structure in Smalltalk-80.

1 INTRODUCTION

Most simulation languages available today are well
suited for developing single-use models of small to
moderate sized systems. These languages support the
analyst in model building and validation tasks such as
identifying system components, abstraction of these
components in the standard constructs, building the
system model, carrying out simulation experiments,
collecting results, and performing statistical analysis.
The analyst generally concentrates on the model
building activities of a specific scenario. Generally, the
assessment of different alternatives is done in terms of
changes in system parameters such as service patterns,
arrival patterns, and failure rates, and their impact on
system performance. These kinds of alternatives are
normally incorporated into the basic model through
small embellishments. Major changes in the system

680

model such as changes in the structure of the system
and their impact on the system performance cannot be
easily handled. Thus, the traditional languages
facilitate model reusability only to a limited degree. In
this paper, we present an implementation of a highly
reusable modeling and simulation framework for
discrete part manufacturing systems.

In Section 2, we present some background
information. In Section 3, we discuss some
fundamental issues for incorporating reusability in a
simulation framework. Section 4 extends the
reusability concepts as applied to our modeling and
simulation framework for discrete part manufacturing
systems. The next section deals with the design and
implementation issues of the modeling and simulation
environment. Section 6 presents an illustrative example
of the interactions between the simulation objects
during a simulation execution. Section 7 presents
concluding remarks.

2 BACKGROUND

Advancements in object-oriented programming
(OOP) and related technologies such as knowledge
engineering and modeling formalisms were the
fundamental catalysts which caused a major paradigm
shift in the modeling, analysis, and design of complex
manufacturing systems. A research team in the Center
for Computer Integrated Manufacturing (CIM) at
Oklahoma State University has been exploring
alternative approaches to the modeling and simulation
of complex systems since 1985. The research efforts
were directed mainly at conceptualizing new
approaches to model construction, utilization, and

Highly Reusable Framework for Manufacturing Systems 681

maintenance within an operating environment. The
fundamental guiding factors in the quest for an
alternative approach were the concepts of “plug
compatibility of building blocks" and "modularity in the
model building process.” Over time these factors led to
the concepts of a reusable simulation framework and
separation of physical, information, and control objects
during the abstraction of real world entities. There was
a need for a framework that readily supports
implementation of these concepts. Due to the well
known advantages of OOP languages, as documented
by Adiga [1989], Cox [1986], and Meyer [1988], the
research team chose to implement these concepts in the
object-oriented paradigm. This paradigm allows
incremental revisions of the modeling and simulation
environment. After an initial implementation in
Smalltalk-V [Beaumariage 1990, Digitalk 1986], we
shifted to a more powerful environment, Smalltalk-80
[Goldberg and Robson 1989].

In previous technical publications we have shared
our experiences in modeling and simulation using OOP
with the research community [Beaumariage and Mize
1990, Basnet et al. 1990, Pratt et al. 1991]). Here we
present, in greater detail, the design and
implementation of our framework for modeling and
simulation of discrete part manufacturing systems.

3 REUSABLE SIMULATION FRAMEWORK
REQUIREMENTS

Reusability is a relativistic concept, as it cannot be
defined without referring to the experimental time
frame. The following paragraphs describe rcusability
for short and long time frames.

Short-time-frame reusability: To achieve reusability
in this context, the simulation/modeling approach
should allow the modeler to repetitively use the basic
model building blocks that correspond to the real world
system components, to either reconfigure the model, or
allow minor modifications to the building blocks.

Long-time-frame reusability: The real world system
structure may change drastically. ~ Some of the
subsystems which were considered part of the external
environment may have to be explicitly considered as
part of the system under study, i.e., the system
boundary itself may change. From these
considerations, over the long term, the rcusability
features of the simulation framework should allow the
modeler to:

1. reuse a subset of existing building blocks along
with newly defined building blocks to experiment with
areconfigured system, and

2. expand the boundary of the system description to
easily incorporate new subsystems without changing the

existing building blocks of the current system. This
means that the building blocks defined in the earlier
model remain valid even if the system boundary has
been expanded. To realize this, the simulation
framework should provide for an easy coupling of the
existing building blocks with the new blocks.

The reusability features in a simulation framework
go a long way in supporting the model maintenance
requirements. Consider for example a simulation
model of a manufacturing system. As the
manufacturing system evolves, its structure changes, it
interacts differently with its environment, and the
environment itself may change. Traditional modeling
efforts do not lend themselves easily to updating the
manufacturing system model in order to reflect the
current manufacturing system structure.

However, if the model is formulated in a framework
with reusability features, the model itself can evolve to
keep in step with the manufacturing system evolution.
In the present day philosophy of CIM, a manufacturing
system is constantly evolving, therefore requiring
constant changes in the system model. The simulation
framework with reusability features easily lends itself to
such model maintenance tasks.

The choice of Smalltalk-80 for implementing the
code for our simulation environment was due to the fact
that it is one of the purest OOP languages. Many of the
object-oriented characteristics can be traced to the
SIMULA 1 language [Meyer 1988]. Simula, though
popular in academia in Europe and throughout the
world, has never gained widespread use in the
commercial environment [Kreutzer 1986]. Smalltalk
includes an explicit message passing paradigm creating
a programming style which has since become known as
OOP [Kreutzer 1986, Meyer 1988]. The concepts
underlying OOP can be exploited for simulation
modeling [King and Fisher 1986; Mize et al. 1989;
Thomasama and Ulgen 1988; Ulgen et al. 1989]. For
details on the language Smalltalk-80 and OOP, readers
may refer to Goldberg and Robson [1989], Cox [1987],
or Pascoe [1986].

4 SIMULATION FRAMEWORK FOR MANU-
FACTURING SYSTEMS

The OOP paradigm has been employed for modeling
manufacturing systems by several researchers [Adiga
and Gadre 1990; King and Fisher 1986; Sanderson et al.
1991]. Adiga and Gadre [1990] describe modeling of a
flexible manufacturing system. Their emphasis is on the
modeling methodology and its translation into software
using OOP. Glassey and Adiga [1989] present a
conceptual design of a software library for simulation
of semiconductor manufacturing systems. They have

682 Bhuskute et al.

identified three goals in their research as (1) ease of
assembling special purpose simulation models, (2) ease
of modification of object library and (3) the run time
efficiency of the model assembled from the library of
objects. The first two goals directly lead to reusability.
Sanderson et al. [1991] describe design and
implementation of a Hierarchical Simulation Language,
which is interpreter based and hence offers certain
advantages of portability and modifiability (during
program execution).

In this paper, we present a framework with
reusability features for modeling and simulation of
discrete part manufacturing systems. While many
aspects of the framework may apply equally well to the
modeling of other systems, our focus to date has been
limited to discrete part manufacturing. Expansion to
other areas is an element of our future research agenda.

The concept of reusability was the main goal in
designing the simulation framework for discrete part
manufacturing systems. We have used the concept of
separation for abstraction of a real world entity.
According to this concept, any entity in the real world
system has three dimensions to it, viz. physical,
information, and control. The emphasis on these
dimensions differ with each entity.

While representing the real world entities as
modeling objects, the modeler may separately focus on
the three dimensions. Figure 1 illustrates this concept.
Every real world entity can be abstracted in its three
dimensions. The model object space is correspondingly
three dimensional. Thus, the model object is in fact a
true representation of the real world object, as it has all
three corresponding dimensions.

However, the modeler can visualize each model
object in terms of its projections on the three planes,
viz., the physical plane, the information plane and the
control plane. This results in a structured approach to
abstraction of real world objects.

The primary purpose for the abstraction of a real
world object influences the main focus on the object.
Thus, abstraction automatically results in the separation
of the above three facets of an object. Despite the three
dimensions of an object, depending on our primary
focus, we may still classify the object as if it is one
dimensional. Thus, in a model we can represent
elements of the real world system with physical,
information and control modcling objects. These three
types of objects are defined as [Pratt et al. 1991]:

Physical Object: A physical object is an object with
a tangible correspondent in the real world system. An
object can be classified as a physical object if the
primary focus of the modcler's interest in the object is
its physical extent or characteristics, e.g., parts, work
stations, and material handlers.

physical

control

information

Figure 1: Modeling Object Projection

Information Object: An information object may or
may not have a real tangible correspondent in the real
world system. An object can be classified as an
information object if the primary focus of the modeler's
interest in the object is its information content, e.g., bill
of materials, item master, and routing.

Control Object: A control object is a logical object
which typically has no tangible correspondent in the
real world system. An object can be considered a
control object if its primary function is to (1) evaluate
the state of a given system, (2) exercise a logic
algorithm, and (3) signal an appropriate action be taken,
e.g., a work station queue controller.

In the framework for simulation of discrete part
manufacturing systems, we have exploited the above
concepts of separation during the process of abstraction.
Thus, an object can be abstracted in one, two, or all
threc planes. When some aspect of the real world
object changes, e.g., the physical aspect, the primitive
object representing that physical aspect (defined above
as the physical object) can be changed independently
of the other aspects. Thus the model object can be
easily updated to keep in step with the most recent
changes in the real world object.

In the process of model building, the modeler can
couple several primitive objects to form a coupled
object which corresponds to a real world object. The
coupled object can be stored as a single entity in the
object library [Pratt et al. 1991]. One of the primary
advantages of a coupled object is that it can exhibit
multiple behaviors. The behaviors are those inherited
from its several parent classes.

In our framework we have implemented the
separation of physical, information and control objects
through several classes as described in the next section.

Highly Reusable Framework for Manufacturing Systems 683

5 STRUCTURE OF THE MODELING AND
SIMULATION ENVIRONMENT

The structural elements that define the modcling
environment are illustrated in Figure 2. The dotted box
indicates the implementation counterpart which is a set
of classes responsible for implementing the
corresponding structural element. The mapping
between a structural element and its implementation
counterpart is represented by a heavy line. Thus, the
class library consists of the following four categories:
model representation classes, class SimModel,
simulation classes, and user interface classes. These
categories are described below.

USER INTERFACE

material handlers. The work flow items enter the plant,
move through the work stations they need to visit (as
defined in the part routings), and finally exit the plant
through the plant output buffer as finished goods.

USER INTERFACE

MODEL SPECIFICATION|

CLASSES

(DEFINITION, STORAGE
AND RETRIEVAL)

 MODEL REPRESENTATION,
CLASSES H

SIMULATION MODEL
GENERATION

SIMULATION

[+ IMPLEMENTATION
‘.---.... COUNTERPART

: STRUCTURAL
ELEMENT

Figure 2: Modeling Environment Structure

TR
u
P o O D
AGQV 1 AGV2 AGVmM
Work Center 1
Machine 1 Machine 2 Machine 3 7
3 ®
7 > T R
/ é AGQV 1 AGV 2 AGV m g
% Machine n Machine 5 Machine 4 é
Work Center 2
Machine 1 Machine 2 Machine 3
ZE ZE
k H
% O O O Y
/ } AGV 1 AQV 2 AGV m %
/ Machine n Machine S Machine 4 Z
PLANT

Output Buffer

Figure 3: OOP View of a Manufacturing System

5.1 Model Representation Classes

Model representation classes can be grouped into
three categories: classes representing physical elements,
classes representing information elements, and classes
representing control/decision elements.

5.1.1 Classes Representing Physical Elements

These classes collectively model the behavior of the
physical aspects of a manufacturing system. The
manufacturing system (Figure 3) consists of a plant
having a pair of buffers (input and output), several
material handlers, and a number of work centers. Each
work center in turn consists of a pair of buffers (input
and output), several material handlers, and a number of
work stations. The work stations perform the
machining or assembly operations on the work flow
items (parts). The movement of work flow items
between the work stations is accomplished by the

In addition to classes Plant, WorkCenter,
WorkStation, AssemblyWorkStation, and Material-
Handler, which function as described above, the
following additional classes are used to model the
physical elements of a manufacturing system.

Queue: This class embodies the behavior of a queue
that holds work flow items waiting for some type of
service. A number of queue disciplines such as, FIFO,
LIFO, Earliest Due Date, etc., are defined for this class.
A user can specify any one of these queue disciplines.

CapacitatedQueue: This class embodies the behavior
of a queue that can hold at most the number of entities
defined by the queue capacity.

Buffer: This class represents a storage location. All
the work flow items entering a buffer are stored in a
queue. The buffers are defined for a plant and work
centers to accommodate work-in-process inventory.

5.1.2 Classes Representing Information Elements

These classes collectively model the behavior of the
informational aspects of a manufacturing system.

CustomerOrder: This class represents a customer
order describing the part type ordered and the quantity
required. Customer order generators create the

684 Bhuskute et al.

customer orders to model a steady stream of incoming
orders from the customers in the real system. On
receipt, a customer order is exploded using the bill of
materials structure for the given part to determine
requirements for lower level components. Based on the
quantities on hand, shop orders and/or purchase orders
are generated for the required components.

ShopOrder: This class represents an order released to
the production shop. Shop orders can specify a lot size
of more than one. This produces excess inventory that
can be used to satisfy subsequent customer orders.

Operation: This class represents a machining
operation description. An operation consists of set-up
time and processing time distributions for a given part
on a specified machine.

Routing: This class defines the flow of parts through
the work stations in the manufacturing system. A
routing for a part is defined as a scquence of operations.

BOM: This class defines the parent/child structural
relationships between parts in the manufacturing
system.

ItemMaster: This class contains special information
about each part defined in the bill of materials.
ItemMaster contains information such as lot size, lead
time, on hand quantity, and pending orders.

5.1.3 Classes Representing Control Elements

These classes collectively model the behavior of the
control aspects of a manufacturing system.

QueueController: This class models a controller that
monitors and manages the input and output queues of a
work station or material handler. Based on the
prescribed queue discipline, the queue controller
provides the work station with the next part from the
input queue.

AssemblyQueueController: This class models a
controller that monitors and manages the input and
output queues of an assembly station.
AssemblyQueueController determines if there are
enough components available to initiate an assembly
operation.

WorkCenterController: This class is responsible for
controlling the work center activities. Work-
CenterController releascs incoming work flow items to
its work stations and provides decision support for
routing work flow items in process.

5.2 Class SimModel

This class is responsible for providing a template to
hold information about the entire simulation model of
the manufacturing system. SimModel allows the user
to create, modify, add or delete portions of the model.

Based on the user information SimModel instantiates all
the objects required for the execution of the simulation.
This arrangement separates model definition (i.e.,
specification) from the simulation entities (i.e., object
instantiations) and enables the user to initiate a new
simulation run by using the information in the template.

5.3 Simulation Classes

These classes provide a basic framework for discrete
system simulation and statistics collection. The classes
Simulation, DelayedEvent, and SimulationObject are
taken from Goldberg and Robson [1989].

Simulation: The purpose of this class is to schedule
actions to occur according to the simulated time.

DelayedEvent: This is an active process, which when
delayed for a specific amount of time, is placed on the
queue sorted with respect to the resumption time.

SimulationObject: This class models the simulation
entity and is an abstract class. It has to be further
refined to faithfully represent the system being
modeled.

Tracked Number: This class and its subclasses,
ObsTrackedNumber, TimeTrackedNumber, Tracked-
NumberWithCollection, and TrackedNumberWith-
Histogram, define the repositories for various types of
simulation statistics. The message protocols consist of
methods for clearing statistics, collecting observations,
calculating summary statistics, and printing results.

RandomNumberGenerator and probability distribu-
tion classes : Class RandomNumberGenerator provides
a stream of random numbers required for simulation.
The probability distribution classes implement a variety
of random variate generators.

OrderGenerator: An order generator creates
customer orders with a prescribed inter-arrival
distribution. These orders trigger the pull logic that
explodes each customer order and generates appropriate
shop and purchase orders.

WorkFlowGenerator: A work flow generator creates
work flow items according to a given inter-arrival
distribution and pushes them into the manufacturing
system.

5.4 User Interface Classes

These classes collectively provide a variety of user
interfaces for model definition, modification, and
simulation experimentation with a manufacturing
system.

SimView: This class offers the main menu for the
modeling and simulation environment. As depicted in
Figure 4(a) on the next page, the Simulation Launcher
View provides a user with a list of options such as plant

Highly Reusable Framework for Manufacturing Systems 685

Simul atl 1)) La unch ; Parts Primary workstations Alternate workstations

v
Plant Definition Browser
Parit Definition Browser
Routing D efinition Browser

Machine 1

Experiment fil=ln

Results patd
part5 = -

------------ oG
pan8

R rreevvereoccommecssereccococee

(b)

Part List Plant Definition Browser

Plants Waik Centers Work Stalions Databate

~y _ﬂ, v
Aﬁamhly Station 1 ‘Assembly Station 1
‘Assembly Station 2
Tesle(‘Big Assembly Station
H Machine 2 machine 1
i — achine 2
o ‘Machine 3
| >eontl | Machine &
Tester

SImuIa on Results

Y.

Time in system statistics
No.Obs. Avetage Std.Dev Minmum Maamum Current
v
Part2: 57 101.614 31.3422 439715 180039 154.491 999.286) . .
Pal: 2 135781 109.608 38.2357 404.482 785333 ‘WFI Pat3 selrdﬂ 9lis at('Buila named: Wotk Center 1in-storage . (f)
(C) Pat3: 11 8309 220193 496482 123113 83.9622 ‘WFI Pat3 su!dd 91 watting for aTransport at Buffer named: Work Cem«‘ln-s(uage
Assy. 9 389033 973112 26692 546639 51.839 WFI Part3 serialt 91 grabbed bransportwork Center 1 at Assembly Station 1
Ass2 11 51.5588 163209 25.8926 73.8166 60.7643 WFI Assy sefialit 10 grabbed ransporth New Plant at: Work Center 1in-storage
Assl: 11 615566 97.8035 30.0109 374394 374.34 1000.27
Simulation Ended at #(14 July 1992 1:17:17 pm)

€9)

1.0e23 43.9715 66.6495 89.3275 112.006 134.684 157.362 180.039
43.9715 68 6495 89.3275 112.006 134.684 157.362 180.039 1.0e23

Figure 4: User Interface Windows

