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ABSTRACT

In this paper we present a closed loop operations
scheduling and control design for a flexible manu-
facturing system. The closed loop system consists
of a simulated annealing based predictive scheduler
and the manufacturing system model in the feed for-
ward path, and a reactive re-scheduler in the feedback
path. Deviations of the observed sequenced operation
timings from the scheduled timings, quantified by a
cost functional, are used to trigger the re-scheduling
loop. The capabilities of the system are demonstrated
using a discrete event simulation of a PC board as-
sembly operation.

1 INTRODUCTION

Operations scheduling in a flexible manufacturing
system has been studied by many researchers in the
past few years. Finding computationally feasible so-
lutions for this NP-complete problem has been of con-
tinuous interest in the industrial engineering, oper-
ations research and manufacturing technology com-
munities. Various approaches have been suggested
including, expert systems, neural network methods,
heuristics based systems and other combinatorial op-
timization based methods. In general, these meth-
ods generate schedule plans assuming ideal operating
conditions, i.e., no machine failures, constant setup
and processing times, etc.; that is, they do predic-
tive scheduling. Additional reactive scheduling func-
tions are necessary to maintain the actual operations
schedule near the planned schedule.

In this paper, we present a reactive scheduling
methodology, which uses a predictive scheduler, in
conjunction with a manufacturing system dynami-
cal model, and a threshold triggered, feedback re-
scheduler for on-line scheduling of the manufactur-
ing system. The closed loop configuration is shown
in Fig. 1. In the next section we present the simula-
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Figure 1: Block Diagram for Reactive Operations
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tion model of the manufacturing system used in our
study. We then describe the predictive scheduler and
the reactive scheduler.

2 MANUFACTURING SYSTEM MODEL

A flexible manufacturing system is composed of
a collection of machines, each capable of perform-
ing a variety of operations on different sets of parts.
The parts are processed in a predefined sequence
of operations at different machines. The processing
at each machine can be either batch or continuous
mode. Batch mode operation involves processing a
single part type over a given time interval (deter-
mined by the batch size), and then switching to pro-
cess another part type. Batch mode processing is
used if there is a significant setup time involved for
the machine to switch from processing one part type
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to another. Continuous mode processing is used in
cases where the processing for different part types is
very similar and changeovers do not require a signif-
icant reconfiguration of the machine setup. In our
model, we have grouped sets of physical machines to
form “virtual machines” which process parts in tan-
dem and the manufacturing system operates in a hy-
brid mode, i.e., use batch mode processing for inter-
virtual-machine operation and continuous mode pro-
cessing (single product) within each virtual-machine.
In this paper, we will only discuss scheduling issues
for batch mode processing.

A batch is a physical order for some number of units
of a specific part type. It can be represented as a se-
quence of operations (batch-mode) done in a prede-
fined order on different pre-assigned machines. Each
constituent batch operation represents the processing
of the set of parts on a particular machine. The se-
quence of these batch operations defines a batch-order
precedence for each batch. In a similar fashion, given
a schedule, one can define a machine-order precedence
for each machine to be the ordering of different batch
operations on that machine. The precedence con-
straints in the whole schedule, both machine-order
and batch-order, can be represented as a single se-
quence (not necessarily unique) of operations. The
two precedence sequences can be readily derived from
this single sequence.

To illustrate let us take a simple two machine (m;
and ma,), two batch (b; and b,) problem. Each batch
consists of two operations. In batch b; the operations
are sequenced first on m; and then on ma; the re-
verse order is used by batch bs. If operation ,O
represents the i*? operation of batch b to be per-
formed on machine m, then, for the above example,
a possible schedule operation sequence is given by
< 10i,20% ,0%,,0) >. Since operations ;0] and
20% are for the same machine, this schedule opera-
tion sequence indicates that ;O] must complete be-
fore 0} begins. This schedule operation sequence
and the corresponding derived machine schedules are
shown in Fig. 2. The arrows denote the operation se-
quence for each batch. The same schedule often can
be derived from other schedule operation sequences,
such as < 10},,0%,,0},,03 > for our example.

Each operation is characterized by a set-up time
and the total expected processing time. Based on the
characteristic operation times, machine-order prece-
dence and the batch-order precedence, we can assign
start and finish times to the various operations. This
assignment of operation sequences on different ma-
chines along with their start and finish times, de-
fines the manufacturing system schedule. The initial
schedule 1s generated on the basis of addition of new
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Figure 2: Derived machine schedules

batches to the schedule. The constituent batch oper-
ations for the new batch are inserted in the machine-
idle times in the existing schedule, for an earliest pos-
sible finish time.

Ve have used the software package QNAP2 (Queu-
ing Network Analysis Package) to develop a manufac-
turing system simulation model. The optimal sched-
ules generated by the predictive scheduler are used
as an input to the simulator. The model consists of
a source or a warehouse station which generates the
batch orders and routes them to the appropriate work
stations for processing. The machine (work) stations
are modeled as single server queues where the batch
operations are processed on first-come first-serve ba-
sis. We allow the machines to be either single physical
machines or virtual machines (a sequence of physical
machines processing parts in tandem).

For each batch operation, the machine station sim-
ulates the setup time as a constant time delay. The
actual operation processing is simulated as a sequence
of random time delays corresponding to each individ-
ual part processing. In our model we take the part
processing time to be a Gaussian random variable
with known mean and variance. We permit three
different modes of failure for each machine. Failure
Mode 1 (FM1) allows for random repair time and
is more frequent than FM2 or FM3. FM2 and FM3
represent different types of drastic failures which have
large deterministic repair times. The mean time be-
tween failures (MTBF), for each failure mode, is as-
sumed to be exponentially distributed with a time
varying mean. The failure rate for each mode is in-
cremental with respect to number of operations pro-
cessed since the previous failure. This is consistent
with the machine failure probabilities in an actual
manufacturing system.
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The simulator has a central controller which keeps
track of the batch operation precedence and also the
machine ordering. On completion of a batch opera-
tion on a machine, the batch is routed to the machine
corresponding to the succeeding operation. The se-
quencing in the predictive schedule § is preserved in
the simulation. However, the actual operation times,
which differ from the scheduled time because of ran-
dom processing and setup times, define the actual
schedule §. Fig. 3 shows a sample output of the
simulator, including predicted and actual (simulated)
processing times. (The schedule shown is a partial
schedule of a 30 batch schedule. It may appear in-
consistent in terms of the operation timings due to
the omitted operations.)

3 JOB SCHEDULER

The predictive job scheduler begins with a feasible
schedule and iteratively attempts to improve it by
making small changes. We use simulated annealing
as the algorithm which determines whether or not to
accept the small changes. The cost function being
optimized is a composite penalty for tardiness, work-
in-process, and finished goods storage. The user may
tailor the weightings of the cost elements to suit a
given operational scenario. See Musser, et al, 1991
for details.

The simulated annealing algorithm treats the pro-
cess of optimization as a Markov random process,
where each schedule is a state in a Markov chain.
An initial schedule, Sy, is chosen at random. Next,
a nearby “trial” schedule, 5{”‘”, i1s chosen by some
probabilistic rule, and the two are compared. If the
“trial” schedule has lower cost, it is accepted, with
probability 1, as the new state of the Markov chain.
Otherwise it is accepted with a lower probability de-
termined by the relative costs. More precisely,

Pr{Sear = SIISIY, Si) =
1 if ¢(S§38) < e(Sk)
e(sirrely—c(sk)

e * otherwise

Pr{5k+1 = Sk'Si-r.:Tlek} =
1 — Pr{S41 = Sirie!|Sirial, S )

Here the value, T} is called the “temperature,” and
the sequence {7 }§2 , is called the temperature sched-
ule. If the trial schedule is only accepted when it
has lower cost, the algorithm will remain in any local
minimum it may find. This is the case when the tem-
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Figure 3: Sample simulation run
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perature is zero. A nonzero temperature, however,
gives the Markov chain the opportunity to escape
from local minima. In simulated annealing, we let
T, — 0 slowly, so that the state of the Markov chain
converges in probability to the collection of schedules
with globally minimum cost. In practice, since we can
keep track of the best schedule visited so far, we are
more interested in having ever reached a minimum
than reaching it and staying there.

Generating the trial schedule, Si,’;_"{‘ simply involves
perturbing Si. As discussed in earlier, each schedule
can be represented by a global operation sequence.
To perturb the schedule, we must permute the corre-
sponding sequence. We do this by randomly select-
ing a short subsequence and a new position in the
sequence which remains. Then the subsequence is re-
versed and moved to the new position. The resulting
global sequence may not satisfy all batch precedence
constraints. To resolve this potential violation, each
offending operation is swapped with the (unique) op-
eration in the same batch which does not violate the
batch precedence constraint. Finally, when all batch
precedence constraints are satisfied, the start and fin-
ish times of all operations are computed using the rule
that each operation begins as soon as its predecessors
have completed (with an appropriate adjustment for
setup time). The start and finish times are used to
compute costs of tardiness, work-in-process, and fin-
ish goods storage. This method is shown to converge
to the optimum in Musser, et al, 1991. We stop the
iterative procedure after a certain number of itera-
tions or when the cost stops improving, which results
in a schedule which is good, though sub-optimal.

4 RESCHEDULER

The desired optimal schedule S, generated by the
scheduler, and the actual schedule from the (simu-
lated) model (or the actual factory) S, are compared
by the rescheduler (Fig. 3). The deviation between
the two schedules is measured on the basis of some
cost criteria and a rule-based, threshold triggered
scheme is used for rescheduling. At each rescheduling
instant new jobs can be added to the schedule; this
1s our formulation of on-line reactive scheduling.

For notational convenience let us drop the batch
precedence ordering and use O™ to represent the i'?
operation to be performed on machine m (The au-
tomatic process flow control in the simulation model
makes the batch precedence information redundant).
In effect, we are re-labeling our operations on each
machine and will carry out the analysis on the basis
of individual machine schedules instead of the com-
plete manufacturing system schedule. Let t,(O™)

and t;(O") respectively, denote the start and the
finish times for the operation O in the predictive
schedule S. Now the schedule for machine m can be
defined as:

Sm 2< (0P, 1,(0F), t;(0F)) >im
t,(O{.") < tf(O?) < ta(0?+1)

Let there be M machines in the manufacturing sys-
tem (numbered 1,..., M). Then the overall schedule
can be written as

S=< S, >M

m=1

In the following we use t to represent “real time,”
that is, the position in the actual schedule, S. For
each machine, there is a point in the predictive sched-
ule corresponding to ¢ in S. This point is the “active
time” corresponding to real time ¢, which we write
Tm(t). Precisely, suppose operation O™ is in process
at time ¢ in the actual schedule. S, and suppose it is
expected to complete at time ¢ + 6. Then the active
time for machine m is given by

m(t) = t,(0™) = 6.

Active times are used by the rescheduler as indicated
below.

Initially the active times on all machines are equal
to the real time, say 7,(tg) = t = t9. Because of
the various random features of the simulation, the
two schedules differ in terms of the operation tim-
ings. To correlate the two schedules, at real time
t (to < t), we can define the active time vector
A(t) = [n(t), m2(t) .. (D)]T (A(0) = [to,to.- - to]).
A(t) represents the present status of S in S. For illus-
tration, Fig. 4 shows the two time scales for a single
machine schedule.

For each operation O}, we associate a cost ¢}, =
c(ts(01),t4(0L), 65(0%), t;(OL,)). This cost repre-
sents the penalty involved for the actual operation
times to differ from the scheduled times. Based on
the individual operation costs, the net schedule cost
can be calculated as

M N
C(S.Sitot)=>_ > ch
m=1 =1
to<iy(0}, )<t

The rescheduler keeps track of the two schedules S
and S and at the end of the each operation updates
the net schedule cost C(S,S,to,t). The rescheduling
loop is triggered under the following conditions:

o C(S, §, to,t) > Cr. Here Cr is some
predefined cost threshold.
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Figure 4: Active Times for a single machine

o Failure Mode 2 on any machine
e Failure Mode 3 on any machine
e New Job arrivals

At each such rescheduling instant ¢, the rescheduler
polls in the current status (A(t)) of the manufactur-
ing system schedule. This status is then input to the
scheduler. If the rescheduling is necessary due to fail-
ure 2 or 3 on any machine, an extra input in the form
of the operation OT along with its associated start
and finish times is sent to the scheduler.

The Scheduler uses this information to update the
present schedule S. Past operations are discarded,
and the current real time ¢ becomes the new initial
time to — t. Hence, 7n(t) — ¢ also. The scheduler
then allows the user to make changes (add/remove
batches or operations) in the schedule S!. Next the
simulated annealing based optimization is activated
to generate an optimal schedule. Since the manufac-
turing model is continuously simulating the schedule
S, the optimization is not done for the immediately
scheduled operations. Basically we do not resched-
ule the operations scheduled to start between to and
to + T, for some disable period T' > 0. This allows
for on-line optimization of the current schedule while
the simulation is still running.

Once an optimal schedule is obtained it is input
to the simulation model. In case of failure mode
rescheduling, the failure operation O is treated as
an operation with fixed processing time. Since in this
case t,(OF') = to the operation is not rescheduled and
it is simulated as a repair time. Taking the schedule
shown in Fig. 4, if a failure FM2 or FM3 occurs at
time ¢t on machine m, then the two schedules S and S

!To maintain compatibility with the notation, the opera-
tions are re-numbered from 1 ... Nm for each machine m

tg = Tmlt) Time

Figure 5: Schedule representation for machine failure
induced rescheduling

after rescheduling are depicted in Fig. 5. This closed
loop process is carried out continuously and leads to
reactive operations scheduling for manufacturing sys-
tem. The complete process can be represented n a
flow chart as shown in Fig. 6.

5 CONCLUSIONS

We have used the above methodology to design and
implement a reactive scheduler. We used a simula-
tion model of the Texas Instruments PC board man-
ufacturing facility in Johnson City, TN., as our test
case. The predictive scheduler has been used in the
TI plant; but the on-line reactive scheduler has not
been tested.

Fig. 7 depicts a scaled rescheduling trace.* The
user defined operational cost functions, cost threshold
Cr and the rescheduling disable period T allow the
methodology to represent a range of operational con-
ditions. The cost configuration can also be changed
(online) to address changing operational objectives.

We are now working on multi-level reconfigura-
tion control algorithms for manufacturing systems.
Perturbation analysis, in conjunction with stochas-
tic gradient algorithms, is being used for online con-
trol of processing rates for the case of continuous-
mode processing. Impulse control algorithms based
on dynamic programming (quasi-variational inequal-
ities) are being developed for feedback control in the
batch mode case. Results will be presented in a forth-
coming paper.

2The failure probabilities and time scales have been modi-
fied to present the two mocdes of rescheduling
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