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ABSTRACT

In this paper, we give conjectured upper bounds on
transient total mean waiting times for jobs in ini-
tially idle single source open Jackson networks. If
true, these upper bounds provide lower bounds on
the time required for the transient mean to approach
its steady-state value. We compute the bounds by a
weighted sum of transient means from a network de-
composition, and we graphically display bound per-
formance for five and fifty node networks.

1 INTRODUCTION AND SUMMARY

This paper summarizes a few of the results given in
Chance (1993b) concerning the transient behavior of
queuing networks. To introduce the necessary con-
cepts, we start with an example. Figure 1 displays
one year’s simulated total waiting time output for a
fifty-machine, single-product factory, with re-entrant
routing, rework, and machine breakdowns. Jobs are
released into the factory at a steady rate, and each
output point is the sum of all queuing delays for a
particular job. The simulated factory initially con-
tains no jobs, and this setting influences the output.
In this paper we study the influence of this initial con-
dition, giving conjectured bounds on transient mean
total waiting times.

The simulation used to generate the output of Fig-
ure 1 is a simplified version of a semiconductor man-
ufacturing simulation developed at IBM (see Hood,
Amamoto, and Vandenberge 1989). For an analytic
complement to this simulation, see Connors, Feigin,
and Yao (1992). This IBM simulation has been used
to model very large factories with multiple product
types and complex routings. Due to the complexity
of the initial state, the simulated factories are usually
started with no work in progress. Transient effects in
these simulations can be quite severe and are not ef-
fectively captured by summary statistics. We seek a
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Figure 1: Example Total Waiting Time Output

prospective approach; before the simulation is run we
want to approximate the extent of transient effects.
To this end, we explore transient behavior in queu-
ing network models. Although these models are an
approximation of the simulation, we believe they can
provide valuable insight into the simulation’s tran-
sient behavior.

As an example, Figure 2 shows the layout of a
typical sector inside a larger semiconductor factory
model. Each block represents a group of identical
tools, with the number of tools (servers) listed inside
the block, and the mean service time given above
the block. Jobs enter the sector and are processed
through several machines. Upon completion, jobs are
inspected for defects; faulty jobs are reworked, good
jobs exit the sector. We model this sector with a
Jackson network.



Transient Mean Total Waiting Times in Queuing Networks

0.25 1.20

415

0.10

50%

50%

Figure 2: Single-Sector Configuration

Figure 3a displays a single realization of total wait-
ing times for the sector, starting with no jobs in the
sector. We wish to estimate the limiting mean total
waiting time. Mean waiting times from the begin-
ning of the run are much lower than the limit; from
a single run it is difficult to tell the extent of this
transient effect. Figures 3b, 3¢, and 3d display the
average total wait for 10, 50, and 100 replications.
For larger numbers of replications, it becomes easier
to delineate the transient period. Figure 3d displays
a conjectured upper bound on the transient mean to-
tal wait. Because the conjectured bound approaches
the limit faster than the mean total wait, we can use
it to find a lower bound on the extent of the transient
period.

To compute the bounds for networks, we use a
decomposition method. These networks are as de-
scribed in Jackson (1957), except we additionally re-
strict new jobs to enter the network at a single queue.
This restriction seems typical of many semiconduc-
tor manufacturing simulations, where new jobs en-
ter the factory at a single point. In Section 2, we
give relevant assumptions and notation. In Section 3
we conjecture that mean total waiting times in an
M/M/1 feedback queue are bounded above by those
in a corresponding non-feedback M/M/1 queue with
the same steady-state mean waiting time. In Sec-
tion 4 we conjecture that mean waiting times in an
M/M /s queue are bounded above by those in a corre-
sponding M/M/1 queue with the same steady-state
mean waiting time. In Section 5 we conjecture that
mean total waiting times in single source open Jack-
son networks are bounded above by a weighted sum of
transient mean waiting times from a network decom-
position. In Section 6 we propose a hypothesis for
why the bound obtained through the network con-
jecture is loose for large networks. We consider a
simple serial line, and give analytic and empirical re-
sults for the interarrival time distributions at down-

stream queues. It appears that downstream interar-
rival times are stochastically larger than those at the
front of the line, even though in the limit they are
distributed the same. Thus these downstream queues
are initially less congested, and we hypothesize that
this effect causes the network to warm up more slowly
than the sum of its independent parts.

2 ASSUMPTIONS AND NOTATION

Whenever we consider a Jackson network, we mean a
single-source open Jackson network with the follow-
ing assumptions and notation.

Assumption 1 Queue j (1 < j < N) contains s;
identical servers.

Assumption 2 New jobs enter the network at queue
gnew according to a rate A Poisson process.

Assumption 3 Service at each queue is first-in-first-
out. Service times at queue j are i.i.d. rate y; expo-
nential random variables, independent of the arrival
process.

Assumption 4 After completing service in queue j,
jobs proceed directly to queue k with probability p;«,
or exit the network with probability 1-Y", p;r. Rout-
ing decisions are independent of service and arrival
processes.

Assumption 5 Each queue in the network has ef-
fective traffic intensity

Aj
1jS;

less than 1. Let Ijx) be 1 if condition X holds, 0
otherwise. The effective input rate A; satisfies

pi =

N
/\j = /\ID-:%W] + Z ij)\k-

k=1
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Figure 3: Output from Single Sector

Denote the steady-state expected waiting time at
queue j by a; (p. 88 of Gross and Harris 1985 gives
a closed-form expression for «;.)

3 FEEDBACK QUEUES

In this section, we consider a single M/M/1 queue
¥ with input rate A, service rate y;, and probability
p of instantaneously rejoining the input queue after
service completion. The effective input rate is
A
Ay = —,
1 -7
and the effective traffic intensity is p; = A;/p;. The
service discipline is first-in-first-out. This type of sys-
tem has been extensively studied, and is often called

a feedback queue, because exiting jobs feed back into
the arrival process. For more information, see the
general discussion in Gross and Harris (1985, p. 235),
the survey paper by Disney (1981), or the article on
sojourn times by Hunter (1988).

In this section we conjecture that transient mean
waiting times in the feedback M/M/1 queue L are
bounded above by those from a non-feedback M/M/1
queue ¥* with input rate A\; and service rate y;. For
example, Figure 4 shows a comparison of expected
waiting times in a feedback queue with input rate
A = 0.5, feedback probability p = 0.5, and service
rate p; = 2 versus a non-feedback queue with input
rate A\; = 1 and service rate p,.

Denote the total waiting time of job n in £ by W,
conditioned on job 0 arriving to an empty queue. Let
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Figure 4: Comparison of M/M/1 Transient Mean
Waiting Times with and without Feedback

W7 be similar for £*. We propose the following.

Conjecture 1 Transient mean total waiting times in
the feedback queue X are bounded above by those in
the corresponding non-feedback queue £*, after some
small initial period. That is, there exists some nyg so
that

n>ny = E[W,]<E[W;].

We must specify ny > 0. Since job 0 in £* never
waits, E[Wg] = 0. But job 0 in £ may feed back
behind jobs 1, 2, or higher, and hence E[Wy] > 0. In
our empirical investigation, ny is very small, even for
very high traffic intensities (up to p; = 0.9999).

To provide support for this conjecture, we used the
program described in Kelton and Law (1985) to give
exact values for E[W?], and we used the simulator
described in Chance (1993a) to estimate E[Wy] (us-
ing 1,000,000 independent replications). We tested
low, moderate, and high traffic intensities (p, = 0.10,
0.50, and 0.90). We varied the feedback probability
between 0.10, 0.50, and 0.90. For p; = 0.10, we ex-
perimented for jobs 0 to 5, for p; = 0.50, we tested
jobs 0 to 25, for p; = 0.90, we tested jobs 0 to 100.
In all cases ny was less than 3.

4 MULTISERVER QUEUES

Consider an M/M /s queue . Arrivals occur accord-
ing to a rate A, Poisson process, and service times

are 1.1.d. rate y; exponential random variables inde-
pendent of the arrival process. Jobs are served first-
in-first-out by s identical servers. Denote the steady-
state mean waiting time for ¥ by a;. In this section
we conjecture that transient mean waiting times from
the M/M/s queue ¥ are bounded above by those
those from a M/M/1 queue * having the same input
rate and steady-state mean waiting time.

For example, Figure 5 compares transient mean
waiting times in an M/M/3 queue and an M/M/1
queue having the same input rate and steady-state
mean waiting time.

2 3
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Figure 5: Comparison of M/M/3 and M/M/1 Tran-
sient Mean Waiting Times

To bound the waiting times in X, let the input rate
to X* be Ay, and the service rate

% (1 +1 +4/(A1a1)) RS

With this choice of u}, the steady-state mean waiting
time for ©* works out to be «;, the same as for .
Denote the waiting time of job n in ¥ by W,,, condi-
tioned on job 0 arriving to an empty queue. Let W*
be similar for £*.

On the basis of experimentation with the program
described in Kelton and Law (1985), which computes
exact values for E[W,] and E[W}], we propose the
following.

H =

Conjecture 2 Transient mean waiting times in the
M/M/s queue ¥ are bounded above by those in the
M/M/1 queue &*:

n>0 = E[W,]<E[W.
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Bhaskaran (1986) proves a similar result, but does
not cover the choice of p} we use. To provide support
for this conjecture, we used the program described in
Kelton and Law (1985) to give exact values for E[W;,]
and E[WZ]. It is only necessary to experiment for
A1 = 1, and arange of traffic intensities p = A1 /(sp1);
otherwise, we can rescale time by dividing input and
service rates by the input rate.

We tested very low and very high intensities (0.01
and 0.99) as approximate boundary cases. We tested
low, middle, and high intensities (0.10, 0.50, and 0.90)
to cover the range of intermediate intensities. Second,
the lowest non-trivial number of servers is two, so we
tested that as a boundary case. For intensities 0.01
and 0.10, going beyond three servers resulted in ex-
tremely small waiting times, so we tested only two
and three servers for these intensities. For higher in-
tensities, we tested a reasonable range of servers (2, 3,
5, 10, and 25) Finally, for all intensities except 0.99,
we tested a range of job numbers so that at the up-
per end of the range the waiting times were within
1% of the limiting value «;. For intensity 0.99, we
chose the upper limit so as to make the computa-
tion time reasonable (approximately twelve hours on
a Sun SPARCstation for each choice of s). For all
these cases, Conjecture 2 holds.

5 NETWORKS

Consider a Jackson network ¥ composed of N queues
as described in Section 2. In this section we conjec-
ture that the total mean waiting times for this net-
work are bounded above by a weighted sum of tran-
sient mean waiting times from a network decompo-
sition. For j = 1,..., N, let &% denote an M/M/1
queue, independent of ¥ and all £}, k # j, with in-
put rate A; and service rate p}, where p7 is chosen
in an analogous fashion to Equation (1). Denote the
waiting time for job n in ¥¥ by Wy ., given that job
0 arrives to find £} empty.

Conjecture 3 After some small initial period, tran-
sient mean total waiting times in the Jackson net-
work X are bounded above by the weighted sum of
expected waiting times in queues Z}'f. That is, there
exists some ny so that

Aj

N
n2ng = EW. <) FEWI] (2
j=1

To provide support for this conjecture, we exper-
imented for two network models: small (five nodes)
and large (fifty nodes). We estimated the expected
network waiting times E[W,] from simulation, and

calculated the exact expected waiting times E[Wy ]
using the program described in Kelton and Law
(1985). The small network is the single sector config-
uration displayed in Figure 2. This network is meant
to mimic one sector of a larger semiconductor manu-
facturing line, where jobs are processed sequentially
on machines one through four, then with probability
0.5 are reworked at machine five and started again
at machine one. Figure 6 compares the conjectured
upper bound (2) with the simulated values E[W,,].

d Wait
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Job Number
Figure 6: Comparison of Transient Mean Waiting

Times and Conjectured Upper Bound in Small Net-
work

Figure 7 displays the large network configuration.
For simplicity, all g; = 1, and s; = 1 unless oth-
erwise noted in Figure 7. This network is meant to
mimic a larger manufacturing environment, including
scrap, parallel routing, rework, and multi-level assem-
bly. Figure 8 displays the simulated expected values
E[W,] and the conjectured upper bound (2). The
conjectured bound does not appear to be very tight,
based on Figures 6 and 8. It does appear to be valid,
however, after a very small ng. See Chance (1993b)
for more applications of Conjecture 3, including bot-
tleneck analysis.

6 WHY THE CONJECTURED BOUND
MIGHT BE LOOSE FOR LARGE
NETWORKS

In the previous section, we gave numerical results in-
dicating that the large network example warms up
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Figure 8: Comparison of Transient Mean Waiting
Times and Conjectured Upper Bound in Large Net-
work

much more slowly than the sum of its independent
queues. In this section we seek to understand this
behavior. We consider a tandem Jackson network
of N single server queues, with the assumptions and
terminology of Section 2. New jobs arrive at queue
1 according to a rate A Poisson process. After com-
pleting service at queue j, jobs join queue j + 1 if
J < N, or exit the system if j = N. We briefly
present some analytic and empirical results suggest-
ing that the transient interarrival times at down-
stream queues are stochastically larger than at the
first queue, and thus the transient input processes
are not identical. From these results, we propose that
these downstream queues warm up more slowly than
if they were supplied by independent, rate A Poisson
arrival processes.

Denote the time between the arrival of job n and
job n + 1 to queue j by A{l. For j = 1, the A{z are
i.i.d. rate A exponential random variables. In steady-
state all the A/ are i.i.d. rate A exponential random
variables (see Gross and Harris 1985, pp. 221-223).
For finite n, this is not the case. For example, Fig-
ure 9 shows the distribution functions of the first in-
terarrival times for queues one, two, four, and ten in
a ten queue tandem Jackson network. The distribu-
tion functions for downstream queues appear to be
dominated by those of upstream queues, and hence
downstream interarrival times will tend to be larger
than those upstream.
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Figure 9: Comparison of First Interarrival Time Dis-
tributions for Queues in a Tandem Jackson Network

Denote the number in system (waiting plus in ser-
vice) just after the nth departure at queue j by X,
and the service time of job n at queue j by S7. For
queue j > 1, the nth interarrival time depends on
Xi~1 in the following manner

4 - [ S Xi7t >0,
" Sia+Y Xitlt=o,

where Y is the length of an idle period at queue j -
1 conditioned on the system being empty after the
departure of job n.

In particular, for j = 2 and n = 0, Y is a rate A
exponential random variable independent of St Ss,
and A}; hence

P[AZ<t] = P[SI<t|X}>0P[X:>0+
P[S! +Y < t|X} =0]P[X; = 0.

Using the algebraic manipulator MACSYMA to eval-
uate P[S] +Y < t] and to simplify the resulting ex-
pression, we find

et p%e_l-‘lt

T
Thus the finite-time arrival process to queue 2 is
not Poisson, since it does not have exponentially dis-
tributed interarrival times.

Starting from the assumption p; < 1, it is a matter
of algebraic manipulation to show

P[A <t] < P[Aj<t],

PlA <t = 1
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and hence the first interarrival time at queue two is
stochastically larger than the first interarrival time
at queue one. Conceptually, we can think of queue
one as operating on its input process, in this case by
stretching it. Thus even though in the limit these
queues have identically distributed input processes,
for finite times the interarrival times are larger for
downstream queues. When we approximate the net-
work by a sum of independent queues, we are ignoring
this effect. It appears that this effect increases with
the size of the network.
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