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ABSTRACT

The sample variance, the usual estimator of the
population variance, is biased when the data are
autocorrelated. We investigate interlaced variance
estimators, the average of k sample variances, each

obtained using only every k/# observation; the sample
variance is the special case of k=1. We analyze
performance as a function of k for independent data,
AR(1) processes, and MA(q) processes.

Interlacing reduces bias, in some cases to zero.
Variance and mean squared error (mse) are
asymptotically not a function of k. Because it is
computationally simpler, the sample variance (k=1) is a
reasonable choice for most applications.

1. INTRODUCTION

We consider estimating the population variance from a
stationary time series. The usual estimator of the

population variance, 0'2 is the sample variance,
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where X, X,,..., X, are the n observations and X is the

sample mean.
Ramberg, Sanchez, Sanchez and Hollick (1991),
propose an alternative to the sample variance. They use

every k!h observation to reduce the effect of
autocorrelation. (A similar idea is used in the context of
quantile estimation by Heidelberger and Lewis (1983) to
obtain less correlated or ideally uncorrelated series.)
This estimator, which we refer to as the interlaced
variance estimator, is
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where  §7 = i§0(Xj+ik—Xj) / (m-1) and
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In the following two sections we analyze the bias and
variance, respectively, of the interlaced variance
estimator, as a function of k. Section 4 is a summary.

2. BIAS OF THE INTERLACED VARIANCE
ESTIMATOR

Bias, a measure of the accuracy of an estimator, is the
difference between the expected value of the estimator
and the population value. In this section we state the
expected value of the estimator for identically
independently distributed, (iid) data, MA(q), and AR(1)
processes as a function of k. Interlacing does indeed
reduce bias.
The expected value of the interlaced estimator is
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or equivalently (Schmeiser 1990, p.314),
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where p, = Cov(XI,X1+h) / o ,h=1.2,...,n-1 ,is

the h-lag autocorrelation. The estimator is unbiased for
q-dependent data if k > g, and for iid data for any
positive integer k. That is, for any MA(q) model,
E(5?) = o’ ifk>q.

Unlike MA(q) data, autoregressive processes do not
have cut-off points for covariance. As expected, for
AR(1) models increasing k always decreases the bias.
We numerically showed that when the lag-1 correlation
is 0.3, a skip of k=10 reduces bias 99 percent,
essentially to zero. For lag-1 correlation of 0.9, a skip of
k=10 reduces bias by roughly 50%.

In the next section we see that variance decreases
inversely with sample size, as bias does in this section.
Therefore, because mse is bias squared plus variance,
bias is an asymptotically negligible component of mse.
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3. VARIANCE OF THE
VARIANCE ESTIMATOR

INTERLACED

We analyze the variance of S? for independent data and
MA(q) and AR(1) processes.
For independent data (e.g., Wilks 1962)

4
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n n-k
which is minimized when k=1. Hence the classical
sample variance has minimal mse among interlaced
variance estimators for iid data., but asymptotically the
variance is not a function of k.
For MA(q) models withk > ¢
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Therefore, variance asymptotically does not depend on .
For finite sample sizes and MA(1) data an exact
calculation shows that k=1 produces an estimator with
variance that is negligibly less than for k=2.

For MA(qQ) normal processes, the correlation of
squared observations is the correlation squared, and
therefore for any fixed value of &
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This is also the asymptotic variance of the sample

variance, s? , for these processes. (Ceylan 1993).
Therefore, as in the iid case, the asymptotic mse is not a
function of k.

Our numerical analysis for AR(1) processes suggests
that k=1 yields the estimator with the smallest variance
for finite sample sizes. The choice of k has less effect on
the variance of the estimator as the sample size
increases. We proved that choice of k has no effect on
the variance of the estimator in the limit, as n — eo.

4. CONCLUSION

We have analyzed the interlacing method for sample
variances on several time-series models with various
covariance structures. In each case, the asymptotic mse
is not a function of k, the number of groups.

1) When the data are iid the interlaced variance
estimator is unbiased for all £ and the minimal variance
is achieved with the usual estimator, k=1.

2) For MA(q) models, an unbiased estimator is
obtained using k > q.

3) For AR(1) models, k can be increased to decrease
the bias with a corresponding increase in variance. For
the AR(1) examples that we studied, increasing  did not
improve mse.

Therefore, interlacing is worthwhile only if bias is a
primary concern. Those interested in a good (in the mse
sense) estimator. can choose any value of k.

Computational complexity is a reason to choose k=1.
The computational complexity and the memory
requirement of interlacing increase linearly with k. In
addition, coding is somewhat more complicated since 2k
accumulators (for sums and sums of squares) must be
maintained for the k sample variances, and these k
sample variance must then be averaged.
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