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ABSTRACT

General guidelines for selecting probabilistic input
models as part of a discrete-event simulation study
are presented. Two short examples illustrating input
modeling decisions are also presented, as opposed to
a complete treatment of the subject.

1 INTRODUCTION

Discrete-event simulation models typically have
stochastic components that mimic the probabilistic
nature of the system under consideration. Success-
ful input modeling requires a close match between
the input model and the true underlying probabilistic
mechanism associated with the system. The general
question considered here is how to model an element
(e.g., arrival process, service times) in a discrete-event
simulation given a data set collected on the element
of interest.

Since time and space for this tutorial is limited, the
following simplifying assumptions have been made.

e A reliable source of random numbers exists.
Most introductory simulation textbooks (e.g.,
Law and Kelton 1991) consider random number
generation algorithms.

e An algorithm is available for converting these
random numbers to random variates associated
with the input model to drive the simulation (De-
vroye 1986).

e Data is available on the aspect of the simulation
of interest. For examples of input modeling in
the absence of data, see Schmeiser and Deutsch
(1977) or Law, McComas, and Vincent (1994).

With these assumptions limiting the scope of this
tutorial, the focus turns to selecting the appropriate
probabilistic models for the random components in a
simulation model. Many simulation textbooks have a
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much broader treatment of input modeling than pre-
sented here (e.g., Law and Kelton 1991). These texts
include more specific information on statistical tests
for independence, graphical methods for model selec-
tion, parameter estimation techniques, and goodness-
of-fit tests.

An input model can be specified in a variety
of ways, such as a cumulative distribution func-
tion, hazard function, intensity function or a variate-
generation algorithm. An input model characterizes
each of the stochastic elements of a discrete-event
simulation.

Figure 1 contains a taxonomy whose purpose is to
illustrate the scope of potential input models that are
available to simulation analysts. There is certainly no
uniqueness in the branching structure of the taxon-
omy. The branches under stochastic processes, for ex-
ample, could have been state followed by time, rather
than time followed by state, as presented.

Examples of specific models that could be placed on
the branches of the taxonomy appear at the far right
of the diagram. Mixed, univariate, time-independent
input models have empirical/trace-driven given as an
possible model. All of the branches include this par-
ticular model. A trace-driven input model simply
generates a process that is identical to the collected
data values without relying on a parametric model.
A simple example is a sequence of arrival times col-
lected over a 24-hour time period. The trace-driven
input model for the arrival process is generated by
having arrivals occur at the same times as the ob-
served values.

The upper half of the taxonomy contains models
that are independent of time. These models could
have been called Monte Carlo models. Models are
classified by whether there is one or several variables
of interest, and whether the distribution of these ran-
dom variables is discrete, continuous or contains both
continuous and discrete elements. Examples of uni-
variate discrete models include the binomial distribu-
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tion and a degenerate distribution with all of its mass
at one value. Examples of continuous distributions
include the normal distribution, an exponential dis-
tribution with a random parameter T (see, for ex-
ample, Martz and Waller 1982) and Bézier curves
(Flanigan-Wagner and Wilson 1993). Bézier curves
offer a unique combination of the parametric and non-
parametric approaches. An initial distribution is fit-
ted to the data set, then the modeler decides whether
differences between the empirical and fitted models
represent sampling variability (chance variation) or
an aspect of the distribution that should be included
in the input model.

Examples of k-variable multivariate input models
(see Johnson 1987) include a sequence of k indepen-
dent binomial random variables, a multivariate nor-
mal distribution with mean p and variance-covariance
matrix ¥ and a bivariate exponential distribution
(Barlow and Proschan 1981).

The lower half of the taxonomy contains stochas-
tic process models. These models are often used to
solve problems at the system level, in addition to
serving as input models for simulations with stochas-
tic elements. Models are classified by how time
is measured (discrete/continuous), the state space
(discrete/continuous) and whether the model is sta-
tionary in time. For Markov models, the discrete-
state/continuous-state branch typically determines
whether the model will be called a “chain” or a
“process”, and the stationary/nonstationary branch
typically determines whether the model will be pre-
ceded with the term “homogeneous” or “nonhomo-
geneous”. Examples of discrete-time stochastic pro-
cesses include homogeneous, discrete-time Markov
chains (Ross 1993) and ARIMA time series models
(Box and Jenkins 1976). Since point processes are
counting processes, they have been placed on the
continuous-time, discrete-space branch. Although
the Poisson, renewal and nonhomogeneous Poisson
processes are all pure birth processes, more general
point processes, such as one to model the number of
customers in a queue, can be placed on one of the
continuous time, discrete-space branches.

2 EXAMPLES

Two simple examples illustrate the types of decisions
that often arise in input modeling. The first exam-
ple determines an input model for service times and
the second example determines an input model for an
arrival process.

2.1 Service Time Model

Consider a data set of n = 23 service times collected
to determine an input model in a discrete-event simu-
lation of a queuing system. The ordered service times
in seconds are

17.88 28.92 33.00 4152 42.12 45.60

48.48 51.84 51.96 54.12 55.56 67.80

68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40.

[Although these service times come from the life test-
ing literature (Lieblein and Zelen 1956), the same
principles apply to both input modeling and survival
analysis.]

The first step is to assess whether the observations
are independent and identically distributed (iid). The
data must be given in the order collected for inde-
pendence to be assessed. Situations where the iid
assumption would not be valid include:

o A new teller has been hired at a bank and the 23
service times represent a task that has a steep
learning curve. The expected service time is
likely to decrease as the new teller learns how
to perform the task more efficiently.

o The service times represent 23 completion times
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the ex-
pected time to complete the task is likely to in-
crease with time.

If a simple linear regression of the observation num-
ber regressed on the service times shows a significant
nonzero slope, the the iid assumption is probably not
appropriate. There are a number of other graphical
and statistical methods for assessing independence.
These include analysis of the sample autocorrelation
function associated with the observations and a scat-
terplot of adjacent observations. For this particular
example, assume that we are satisfied that the obser-
vations are truly iid in order to perform a classical
statistical analysis.

The next step to the analysis of this data set in-
cludes plotting a histogram and calculating the values
of some sample statistics. A histogram of the obser-
vations is shown in Figure 2. Although the data set
is small, a skewed bell-shaped pattern is apparent.
The largest observation lies in the far right-hand tail
of the distribution, so care must be taken to assure
that it is representative of the population. The sam-
ple mean, standard deviation, coefficient of variation,
and skewness are

z =172.22

s =37.49 =0.52

8i|»
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Figure 2: Histogram of Service Times
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Examples of the interpretations of these sample
statistics are:

N——

e A coefficient of variation s/Z close to 1 along with
the appropriate histogram shape, indicates that
the exponential distribution is a potential input
model.

e A sample skewness close to 0 indicates that a
symmetric distribution is an appropriate input
model.

The next decision that needs to be made is whether
a parametric or nonparametric input model should be
used. One simple nonparametric model would repeat-
edly select one of the service times with probability
1/23. The small size of the data set, the tied value,
68.64, and the observation in the far right-hand tail
of the distribution, 173.40, tend to indicate that a
parametric analysis is more appropriate. Since the
input model is for service times, the accurate model-
ing of the right-hand tail of the distribution is critical.
These long service times significantly impact queuing
statistics. For this particular data set, a parametric
approach is chosen.

There are dozens of choices for a univariate para-
metric model for the service times. These include gen-
eral families of scalar distributions, modified scalar
distributions and commonly-used parametric distri-
butions (see Schmeiser 1990). Since the data is drawn
from a continuous population and the support of the
distribution is positive, a time-independent, univari-
ate, continuous input model is chosen. The shape of
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the histogram indicates that the Weibull, gamma, log
normal, and log logistic distributions (Lawless 1982)
are good candidates. The Weibull distribution s an-
alyzed in detail here. Similar approaches apply to the
other distributions.

Parameter estimates for the Weibull distribution
can be found by least squares, the method of mo-
ments, and maximum likelihood. Due to desirable
statistical properties, maximum likelihood is empha-
sized here. The Weibull distribution has probability
density function

f(z) = Mepzr—le=(A2)” x>0,

where ) is a positive scale parameter and & is a posi-
tive shape parameter. Let 1, 22,...,2%s be the failure
times. The likelihood function is

n n k=1

L(/\, K) = Hf(x,) = \*Fg" [H 1:,'] e Zi:l()‘z')
=1 =1

The 2 x 1 score vector has elements

Olog L(A, k) _ kn TR
N W ;zi

and

Olog L(A\,k) n = u x
k- ;+n log /\+E log :c,-—Z(,\:ci) log Az;.

i=1 i=1

When these equations are equated to zero, the simul-
taneous equations have no closed-form solution for A
and &:

n
K—/\Tl — kAL sz =0
=1

n n n
- +nlogh+ 21 logx; — z;()\x,-)" log Az; = 0.
1= 1=
To reduce the problem to a single unknown, the first
equation can be solved for A in terms of k yielding

n 1/k
A= | =— .
(Ezl:l wf)

Law and Kelton (1991, p. 334) give an initial es-
timate for k that can be used in Newton’s method
to numerically solve for the maximum likelihood es-
timators. The score vector has a mean of 0 and a
variance-covariance matrix I(\, k) given by the 2 x 2
Fisher information matrix
2 2
E{ ) |%%\€(A,g] E[ &) laoiaLK()\,n)

elmies] ol=2iggc)

](/\, K,) =




Input Modeling 59

The observed information matrix

i -0%log L(A k) —8%log L(A,&)
O(MNK) = ERCR 9A0K _
(A, %) —8%log L(A\ k) =98%logL(Ak) |
ELXR) k2

can be used to estimate I(\, k).

For the 23 service times, the fitted Weibull distribu-
tion has maximum likelihood estimators A = 0.0122
and & = 2.10. The log likelihood function evaluated
at the maximum likelihood estimators is log L(;\, K) =
—113.691. Figure 3 shows the empirical cumulative
distribution function along with the Weibull fit to the
data.

F(1)
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Empirical estimator
0.6 1
Weibull fit

04 A
02 A
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T T T T 4

0 50 100 150

Figure 3: Empirical and Fitted Cumulative Distribu-
tion Functions for the Service Times

The observed information matrix is

- 681,000 875
O\ &)= | g5 10.4]°

revealing a positive correlation between the elements
of the score vector. Using the fact that the like-
lihood ratio statistic, 2[log L(A, k) — log L(A, k)], is
asymptotically x? with 2 degrees of freedom and that
X3 0.05 = 599, 2 95% confidence region for the pa-
rameters is all A and & satisfying

9[—113.691 — log L(\, k)] < 5.99.

The 95% confidence region is shown in Figure 4. The
line k = 1 is not interior to the region, indicating
that the exponential distribution is not an appropri-
ate model for this particular data set.

As further proof that k is significantly different
from 1, the standard errors of the distribution of the
parameter estimators can be computed by using the
inverse of the observed information matrix

0.00000165 —0.000139

“1/% 2y —
07 (MR = | Z0.000139 0.108
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Figure 4: 95% Confidence Region Based on the Like-
lihood Ratio Statistic

This matrix is the asymptotic variance-covariance
matrix for the parameter estimators A and «. The
standard errors of the parameter estimators are the
square roots of the diagonal elements

a5 = 0.00128 dx = 0.329.

Thus an asymptotic 95% confidence interval for « is
2.10 — (1.96)(0.329) < k < 2.10 + (1.96)(0.329)

or
1.46 < k < 2.74,

since zg g25 = 1.96. Since this confidence interval does
not contain 1, the inclusion of the Weibull shape pa-
rameter & is justified.

At this point, model adequacy should be as-
sessed. Since the chi-square goodness-of-fit test suf-
fers from arbitrary interval limits and can not be ap-
plied to small data sets, the Kolmogorov-Smirnov,
Cramer-von Mises or Anderson-Darling goodness-of-
fit tests are appropriate here (Lawless 1982). The
Kolmogorov-Smirnov test statistic, for example, for
this data set is 0.152, which measures the maximum
difference between the empirical and fitted cumula-
tive distribution functions. This test statistic corre-
sponds to a P-value of approximately 0.15 (Law and
Kelton 1991, page 391), so the Weibull distribution
provides a reasonable model for these service times.
Other models should also be assessed and compared
to the Weibull model.

Many of the discrete-event simulation packages ex-
hibited at the Winter Simulation Conference have the
capability of determining maximum likelihood esti-
mators for several parametric distributions. If the
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package also performs a goodness-of-fit test such as
the Kolmogorov-Smirnov or chi-square test, the dis-
tribution that best fits the data set can quickly be
determined. P-P and Q-Q plots can also be used to
assess model adequacy.

2.2 Arrival Process Model

Arrival times to a lunch wagon between 10:00 AM and
2:30 PM are collected on three days. The realizations
were generated from a hypothetical arrival process
given by Klein and Roberts (1984). A total of n =
150 arrival times were observed, including n; = 56,
ny = 42 and nz = 52 on the £ = 3 days. Defining
(0,4.5] be the time interval of interest (in hours) the
three realizations are

0.2152 0.3494 0.3943 --- 4.175 4.248,

0.3927 0.6211 0.7504 --- 4.044 4.374,
and

0.4499 0.5495 0.6921 --- 3.643 4.357.

One preliminary statistical question concerning
this data is whether the three days represent pro-
cesses drawn from the same population. External
factors such as the weather, day of the week, adver-
tisement, and workload should be kept fixed. For this
particular example, these factors have been fixed and
the three processes are representative of the popula-
tion of arrival processes to the lunch wagon.

The input model for the process comes from the
lower branch (stochastic processes) of the taxonomy
in Figure 1. Furthermore, the arrival times con-
stitute realizations of a continuous-time, discrete-
state stochastic process, so the remaining question
is whether or not the process is stationary.

If the process proves to be stationary, the tech-
niques from the previous example, such as drawing
a histogram, and choosing a parametric or nonpara-
metric model for the interarrival times are appropri-
ate. This results in a Poisson or renewal process.
On the other hand, if the process is nonstationary, a
nonhomogeneous Poisson process might be an input
appropriate model.

Figure 5 contains a plot of the empirical cumula-
tive intensity function estimator suggested by Leemis
(1991) for the three realizations. The solid line de-
notes the point estimator for the cumulative intensity
function A(t) and the dashed lines denote 95% con-
fidence intervals. The cumulative intensity function
estimator at time 4.5 is 150/3 = 50, the point estima-
tor for the expected number of arriving customers per
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Figure 5: Point and 95% Confidence Interval Estima-
tors for the Cumulative Intensity Function

day. If A(t) is linear, a stationary model is appropri-
ate. Since people are more likely to arrive to the lunch
wagon between 12:00 (¢t = 2) and 1:00 (¢ = 3) than
at other times and the cumulative intensity function
estimator has an S-shape, a nonstationary model is
indicated. More specifically, a nonhomogeneous Pois-
son process will be used to model the arrival process.

The next question to be determined is whether a
parametric or nonparametric model should be chosen
for the process. Figure 5 indicates that the inten-
sity function increases initially, remains fairly con-
stant during the noon hour, then decreases. This
may be difficult to model parametrically, so a non-
parametric approach, possibly using A(t) in Figure 5
might be appropriate.

There are many potential parametric models for
nonstationary arrival processes. The Weibull, or
power law process has intensity function

A(t) = A*wt*"1 t >0,

where A and k are positive parameters. This pop-
ular model would not be appropriate for this data
set since the intensity function can only increase, de-
crease or remain constant, and can not model an in-
tensity function that increases, then decreases. Since
the intensity function is analogous to the hazard func-
tion for time-independent models, an appropriate 2-
parameter distribution to consider would be one with
a hazard function that increases initially, then de-
creases. A log-logistic process, for example, with in-
tensity function

Ak(At)—1

A = T 0w

t>0,
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for A > 0 and k > 0, would certainly be an im-
proved choice. A more general EPTF (exponential-
polynomial-trigonometric function) model is given by
Lee, Wilson and Crawford (1991) with intensity func-
tion

A(t) = exp [Z a;t! + ysin(wt + ¢)] t>0.

i=0

The trigonometric function is capable of modeling the
intensity function that increases, then decreases.

In all of the parametric models, the likelihood
function for the vector of unknown parameters =
(61,62, ...,0,) from a single realization on (0, c] is

L(9) = [fI A(t;) | exp [—- /C /\(t)dt] .
i=1 0

Maximum likelihood estimators can be determined
by maximizing L(6) or its logarithm with respect to
all unknown parameters. Confidence intervals for the
unknown parameters can be found in a similar man-
ner to the service time example.
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