Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

HIERARCHICAL ABILITIES OF DIAGRAMMATIC REPRESENTATIONS OF DISCRETE EVENT
SIMULATION MODELS

Vlatko Ceri¢

Faculty of Economics
University of Zagreb
Kennedyjev trg 6, 41000 Zagreb, CROATIA

ABSTRACT

Diagrammatic models are a particular class of
conceptual models which enable representation of
models in two dimensions. Besides, this type of models
typically use a limited nimber of symbols and thus
enable easier model comprehension as well as better
communication between modellers and their clients.
One of the powerful features of diagrammatic modelling
is its capability to enable hierarchical modelling.
Advantages of hierarchical modelling are to enable
easier modelling of complex systems by using top-down
model design and permitting information hiding. In this
paper technical capabilities of several diagrammatic
modelling methods (augmented Petri nets, activity
diagrams and activity cycle diagrams) for using
hierarchical modelling are demonstrated. Top-down
model development with diagrammatic modelling
techniques is illustrated on a rather comprehensive
example of modelling airport passenger building
operations. Arguments for using hybrid model
development are presented as well.

1 DIAGRAMMATIC MODELLING IN
DISCRETE EVENT SIMULATION

Diagrammatic modelling methods are one of the mostly
used and developed class of conceptual modelling
methods in discrete event simulation. They consist of a
set of symbols connected in diagrams. Each type of
symbol has a specific meaning related to a particular
notion in discrete event simulation like event, resource,
activity, condition, dynamic entity etc.

There are several reasons which brought popularity to
diagrammatic modelling methods (Martin, 1987, Evans,
1988 Kreutzer, 1986). Some of them are of general
character, applicable to modelling of any type of

589

systems, while the other are specific for discrete event
simulation modelling:

¢ Conceptually close objects can be represented
physically adjacent, bringing to light strength of
connections in the system,;

o Interactions between objects are shown in two
dimensions, enabling much easier comprehension
of a model than the forced sequential ordering of
objects in procedural representations. This is due to
a parallelism of human visual system which enables
fast visual processing of the whole model or its
significant parts;

e Syntax and semantic of diagrammatic modelling
methods are often rather simple, which helps the
easier and faster model design and understanding;

o Hierarchical model decomposition is possible in
most diagrammatic methods, which again assists
both modelling of complex systems and model
understanding;

e Most diagrammatic models enable manual
simulation of system dynamics - it can be done by
moving counters which represent objects by
following the rules of one of possible simulation
strategies. This feature can help in model
validation, and is also useful as a simulation
learning tool.

Besides all these, diagrammatic modelling methods
exemplify the fundamental feature of simulation models
as imitation of real system structure and operation. This
increases transparency of models and enable them to be
the extraordinary tools of communication between
modellers and their clients.

Two overviews of discrete event simulation
diagrammatic methods have been recently made by
(Pooley, 1991a; Ceri¢ and Paul, 1992), describing a set
of the mostly used methods.

The most important and mostly used representatives
of diagrammatic modelling methods in discrete event
simulation are the following five methods: augmented



590

Petri nets (Evans, 1988; Térn, 1981, Torn, 1985),
activity cycle diagrams (Pidd, 1992), activity diagrams
(Hughes, 1984; Pooley and Hughes, 1991), event graphs
(Schruben, 1983) and GPSS block diagrams (Schriber,
1974). This selection of methods is based on the
intensity of use of the methods, their modelling power as
well as availability of documentation and literature. A
comparison of four of these methods using a set of
criteria is given in (Ceri¢ and Paul, 1992).

2 HIERARCHICAL MODELLING APPROACH

Design of complex systems is confronted with a problem
of describing system objects, their characteristics and
interactions in a concise and understandable way. One
of the basic strategies for accomplishing this task,
devised both by nature and by human beings, is a
hierarchical approach (Simon, 1981). This box-within-
a-box approach develops model elements from higher
levels into a more detailed description on lower
hierarchical levels.

Diagrammatic modelling seems to be a particularly
appropriate tool for hierarchical model design. Since
diagrams are drawn in two dimensions, objects having
complex internal structures can be represented as simple
icons - details of these objects can be developed
separately (on lower levels) in the diagrammatic form
too. Some parts of these objects may be rather
complicated themselves and can be further developed in
separate diagrammatic models, etc. Such an approach
was used for centuries in design of geographic maps,
architectural drawings etc. Use of hierarchical approach
in diagrammatic modelling in discrete event simulation
will be discussed in the following section.

Hierarchical model design strategy offers two basic
model development techniques: abstraction
(aggregation) and analytic refinement (Balmer, 1987).
Abstraction is used for aggregation of number of lower
level model elements into a single higher level element.
It enables simplification of complex model structure,
and is a basic technique used in a bottom-up strategy of
model building. Analytic refinement is a technique of
developing a detailed description of a single modelling
block on the higher hierarchical level. It enables
development of a model starting with a rough system
description, and is a base for a top-down strategy of
model building.

In a powerful top-down strategy of stepwise model
refinement higher model levels are developed first,
resulling in a simple description of a system using just a
few model units. These model units are regarded as
modules which are further refined on lower levels, etc..
until a satisfactorily final level of system details is

Cerié

developed. This approach to model development is
particularly appropriate if modules coincide with parts
of physical or logical system structure (Pooley, 1991b).
Hierarchical design strategy enables specialized working
groups to develop parts of models independently and in
parallel with other working groups. This approach
results in less errors, better ability of model
understanding and validating as well as faster model
development.

Although top-down strategy appears to be the most
powerful and mostly used model building strategy. both
bottom-up strategy and the combination of the two
strategies are also often used in model design.
Hierarchical approach successfully supports each of
these approaches.

Another important feature of hierarchical approach is
that it enables information hiding (Murphy and Blake,
1989). This means that local contexts of modules are not
identified on higher hierarchical levels. The only
information known on a higher level is function of the
element (module), described by its name and input-
output relations with the other model elements.
Moreover, if anything changes in description of lower
level modules, higher level representation can stay
intact. Information hiding is strongly related to
principles of abstraction and simplicity. and supports
model security and reliability (which are major issues in
software development process).

Hierarchical approach is also very useful in model
evolution, which happens in various phases of model
life. Models have to be modified in order to reflect the
changed view or design goals of clients, as well as new
insight of modellers. Instead of dealing with a model as
a whole, we can localize necessary changes to relevant
parts of the model only. Another advantage of
hierarchical modelling is in improved communication
with users, who can understand model more easily by
concentrating on the part of model of interest.

Besides natural relation of hierarchical modelling
with modular programming, one other possibility in
computer-based development of diagrammatic models is
that libraries of standard diagrammatic models could be
developed for purpose of assisting reuse of frequently
needed submodels (Pooley. 1991b).

To resume, the main advantage of hierarchical
modelling are to enable:

e casier and less error-prone modelling of complex

systems;

e top-down model development, enabling parallel

submodels design;

o information hiding;

¢ improved communication with users;

e modular programming, including creation of a

library of reusable modules.



Hierarchical Abilities 591

3 HIERARCHICAL MODELLING WITH
DIAGRAMMATIC TECHNIQUES

In a diagrammatic simulation modelling approach
models are described as networks of interconnected
icons. Some of these icons may describe a cluster of
actions which are further developed in detail on next
lower level diagram. Some of the icons on lower level
diagrams may themselves be a conglomerate of actions,
hence we can unfold them further in detail, etc.

In this section we shall demonstrate the use of
hierarchical modelling with activity diagrams, activity
cycle diagrams and augmented Petri nets. The
hierarchical abilities of event graphs and GPSS block
diagrams will be discussed too. A more detailed
treatment of hierarchical modelling with diagrammatic
modellin% techniques in discrete event simulation is
given in Ceri¢ (1995).

3.1 Activity diagrams

Hierarchical modelling approach in activity diagrams
was suggested by Pooley (1991b), who uses the
following modelling terminology. A model containing
all details is called a 'flat' model, while processes in it
are called 'atomic processes'. Processes containing
groups of atomic processes are called 'compound
processes’, and diagrams containing such compound
processes are called 'configuration diagrams'. Only
process symbols (boxes) and links are used in
configuration diagrams.

Update
data

Release m
Figure 1: Activity diagram of a reader-writer process

We present hierarchical abilities of activity diagrams
on the example of a reader-writer system, being an
expanded version of a system described in Pooley
(1991b). This model, shown on Figure 1, contains

reader and writer processes appearing in computer
environments. After a reader is generated he or she
submits a request for » units of central memory (CM), in
order to be able to read data from CM. After reading is
over, he releases all CM used by him. After a writer is
generated, he first submits a request for m units of CM,
and after they are allocated to him he requires an
arithmetic-logic unit (ALU). When ALU is obtained
necessary calculations can be made (using both ALU
and CM). After that ALU is released and data update
operation in CM can take place. Finally, all units of CM
used by the writer are released.

Acquire m

Acquire n CM/‘
w
Acquire ALU/

Rzlease\ALJ

. Update
data
Release
CM

’\

Release n
cM

READER

WRITER

a) Reader process b) Writer process

Figure 2: Activity diagrams of reader and writer
processes

We shall form two macro symbols (‘compound
processes’) here. Figure 2 shows a READER and
WRITER processes containing all actions done by
reader and writer, respectively, but excluding all
computer resources used (CM and ALU). A compact
higher level diagram (‘configuration diagram') using
these 'compound processes' is shown in Figure 3. Again,
any changes in reader and writer processes will affect
only ‘'compound processes’ models, while the
‘configuration diagram' will remain intact.

Acquire m CM

Acquire n

Arithroetic>

logic unit 'WRITER

Release m CM

Figure 3: Activity diagram of a reader-writer system
with abstraction of READER and WRITER processes



592

3.2 Augmented Petri nets

The idea of hierarchical modelling approach was
expressed already for original Petri nets (Peterson,
1977). This idea was advocated (T6rn, 1981; Toérn,
1985) in the context of augmented Petri nets (simulation
nets) too. Namely, a group of transitions and places can
be regarded either as a transition or as a place on a
higher hierarchical level. Such a group will be regarded
as a transition if its elements communicating with the
rest of the model are transitions, and vice versa.

ARRIVAL OF
PASSENGERS
IAND BAGGAGE

DEPARTURE OF
PASSENGERS
AND BAGGAGE

y

ARRIVAL OF
PASSENGERS
OR DEPARTURH

For transit

Figure 4: High level augmented Petri net (APN) model
for airport passenger building operations

We shall demonstrate hierarchical abilities of
augmented Petri nets on the part of the comprehensive
model of the airport passenger building operation. The
model will be restrained to international arrivals and
departures. Two main processes in this system are
arrival and departure flights. Both of them are using the
same runway(s), and arriving aircrafts are used for the
subsequent departure flights. After landing, arrival

ARRIVAL FLIGHTS

Arrival
of flights

Flight arrivals

Figure 5: APN model of ARRIVAL FLIGHTS module

Cerié

flights are followed by passenger and baggage
processing. After this, some passengers exit from the
system while the others are transit passengers to some of
the departure flights (processing of their baggage is not
modelled here). Passengers coming to the airport for
departure flights are processed too, as well as their
baggage. till the moment they reach appropriate
departure aircraft.

Baggage Passengers [ARRIVAL OF PASSENGERS
arrival arrival AND BAGGAGE
ARRIVAL ARRIVAL
BAGGAGE PASSENGERS
PROCESSING PROCESSING

Baggage Passengers

BAGGAGE CLAIM

AND CUSTOMS
PROCESSING

Passengers with baggage

Figure 6: APN model of ARRIVAL OF PASSENGERS
AND BAGGAGE module

A high level (zero level) model using augmented
Petri nets (APN) diagrammatic technique is shown in
Figure 4. Two of the first level modules are a 'macro’
place ARRIVAL FLIGHTS, shown in Figure 5, and
'macro’ transition ARRIVAL OF PASSENGERS AND
BAGGAGE, shown in Figure 6. This second module
can be further decomposed in third level modules, one
of them shown in Figure 7.

Baggage Passengers

BAGGAGE CLAIM AND
CUSTOMS PROCESSING

Start

Baggage claim

End

Start
1dle Customs

End

Passengers with baggage

Figure 7: APN model of BAGGAGE CLAIM AND
CUSTOMS PROCESSING MODULE



Hierarchical Abilities 593

This model is clearly demonstrating the
diagrammatic methods ability of multiple-level
hierarchical decomposition. A complete model of the
airport passenger building operation is presented in
Ceri€ (1995).

3.3 Other methods

There are just a few reports on using activity cycle
diagrams for hierarchical modelling (Szymankiewicz et
al, 1988). This fact is rather curious having in mind
extensive use of this method for modelling, as well as its
good coverage in literature. Anyway, activity cycle
diagrams could be quite conveniently used in
hierarchical modelling. Namely, any sensible group of
symbols in activity cycle diagram will contain activities,
so that any 'macro’ symbol could be understood as a
macro activity. Hierarchical modelling abilities of
activity cycle diagrams are demonstrated in (Cerié,
1995).

In the event graphs technique the only symbols which
could be candidates for hierarchical abstraction are
events. However, since events are happening in a
moment of time, any connection of a group of events
which are not happening at the same moment (either
because of a fixed time delay or because of a necessity to
wait till some condition is fulfilled) could not be
regarded as the event itself. In view of above, event
graphs seem inappropriate for hierarchical modelling.

GPSS block diagrams technique could in principle be
used in hierarchical modelling. Practical obstacle here is
that symbols of this type of diagrams were conceived as
a one-to-one correspondence to GPSS blocks
(statements). However, it is possible to use general
principles of hierarchical modelling and develop useful
higher-level abstraction symbols for this modelling
technique (Ceri¢, 1995).

4 TOP-DOWN MODEL DEVELOPMENT

It was claimed that hierarchical modelling can lead to a
successful top-down model development. The course
and power of this approach was demonstrated in
previous section on a more comprehensive Petri net
model of the airport passenger building operation.

This example in its complete form apparently
illustrates the gains obtained by using the hierarchical
top-down system decomposition. If we try to draw the
complete model at once, we will have serious problems
in doing this correctly and efficiently. Besides, it would
lead us to a large model with all atomic clements
included, and this is not easy for comprehension.

S HYBRID MODEL DEVELOPMENT

Top-down model design is not the only one by which
this model could be developed. Some of the 'atomic’
system elements can often be constructed directly, and
they can subsequently be aggregated into higher level
‘compound’ elements or modules. This can be done in a
few hierarchical levels. This type of development is
known as the bottom-up model design approach.
However, some other parts of that same model could
more easily be developed in earlier phase with crude
‘compound' elements, which are later refined into
‘atomic’ elements following the fop-down model design
approach.

Such hybrid model development, using both top-down
strategy (analytical refinement) and bottom-up strategy
(aggregation) in design of the same model is a very
flexible strategy. It doesn't renstraint a model
development team to just one direction of model
development, but rather leaves team members to apply
the approach that best suits their experience and their
current level of knowledge on a particular part of the
system.

In design of comprehensive models such hybrid
model development is likely to be the best suited
modelling approach in existance.

For both top-down and bottom-up model development
hierarchical modelling approach can be followed to
achieve hierarchically structured final model.

6 CONCLUSIONS

Hierarchical modelling is a powerful model construction
approach used in many modelling areas. We have
discussed hierarchical modelling abilitics of several
discrete event simulation diagrammatic modelling
methods, and demonstrating them for activity diagrams
and augmented Petri nets. It was shown that this
approach leads to easier and more reliable model
construction, as well as localization of requests for
model change. A popular top-down model design
strategy was successfully wused on a rather
comprehensive example of airport passengers buiding
operation. Our intention is to apply hierarchical
modelling to computer based diagrammatic modelling
using augmented Petri nets.

ACKNOWLEDGEMENTS

I want to acknowledge a personal help of Professor Ray
Paul, as well as of the Brunel University Computer
Science Department, for providing their valuable



594

resources and good working atmosphere during a three
month visit to Brunel University in 1993. 1 also greatly
appreciate help of both The British Council and the
Commission of the European Communities, whose
research and visiting grants over the past few years have
enabled this research.

REFERENCES

Balmer, D. W. 1987. Hierachical Modelling in Discrete
Event Simulation, Proceedings of the United
Kingdom Simulation Council Conference.

Cerié, V. and R. Paul. 1992. Diagrammatic
Representations of the Conceptual Model for Discrete
Event Systems. Mathematics and Computers in
Simulation 34: 317-324.

Ceri6, V. 1995. Diagrammatic Modelling for Discrete
Event Simulation. To be published.

Evans, J. B. 1988. Structures of Discrete Event
Simulation: An Introduction to the Engagement
Strategy. Chichester: Ellis Horwood.

Hughes, P. H. 1984. DEMOS Activity Diagrams. Notat
nr 1, FAG 45080 Simulering, Host 1984, Norges
Tekniske Hogskole, Institutt fot Databehandling,
Norway.

Kreutzer, W. 1986. System Simulation: Programming
Styles and Languages. Sydney: Addison-Wesley.

Martin, J. 1987. Recommended Diagrammatic
Standards for Analysts and Programmers: A Basis for
Automation. Englewood Cliffs: Prentice-Hall, .

Murphy, J. S. and K. G. Balke. 1989. Software
Diagramming: a New Design Paradigm. New York:
McGraw-Hill.

Peterson, J. L. 1977. Petri Nets. Computing Surveys 9:
223-252.

Pidd, M. 1992. Computer Simulation in Management
Science, 3rd Ed. Chichester: Wiley.

Pooley, R. J. 199la. Towards a Standard for
Hierarchical Process Oriented Discrete Event
Simulation Diagrams. Part I: A Comparison of
Existing Approaches. Transactions of The Society for
Computer Simulation 8: 1-20.

Pooley, R. J. 199lb. Towards a Standard for
Hierarchical Process Oriented Discrete Event
Simulation Diagrams. Part III: Aggregation and
Hierarchical Modelling. Transactions of The Society
Jor Computer Simulation 8: 33-41.

Pooley, R. J. and P. M. Hughes. 1991. Towards a
Standard for Hierarchical Process Oriented Discrete
Event Simulation Diagrams. Part I1I: The Suggested
Approach to Flat Models. Transactions of The Society
Jor Computer Simulation 8: 1-20.

Cerié

Schriber, T. J. 1974. Simulation Using GPSS. New
York: Wiley.

Schruben, L. 1983. Simulation Modeling With Event
Graphs, Communications of the ACM 26: 957-963.
Simon, H. A. 1981. The Sciences of the Artificial, 2nd

Ed. Cambridge, Mass.: The MIT Press.

Szymankiewicz, J., J. McDonald and K. Turner. 1988.
Solving Business Problems by Simulation. London:
McGraw-Hill.

Toérn, A. A. 1981, Simulation Graphs: A General Tool
for Modeling Simulation Designs. Simulation 37:
187-194.

Torn, A. A. 1985. Simulation Nets, a Simulation
Modeling and Validation Tool. Simulation 45: 71-75.

AUTHOR BIOGRAPHY

VLATKO CERIC is an Associate Professor in the
Faculty of Economics at University of Zagreb, Croatia.
He received B.S. and M.S. degrees in physics from
University of Zagreb in 1969 and 1972 respectively, and
he received Ph.D. degree from University of Belgrade in
1985. His research interest is in discrete event
simulation, particularly conceptual modelling and
complex systems modelling. He got a Fulbright
lecturer/research grant for 1994/95, and is visiting Prof.
Andrew Seila in The University of Georgia at Athens for
that period.



