Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

PARALLEL DEVS: A PARALLEL, HIERARCHICAL, MODULAR MODELING FORMALISM

Alex ChungHen Chow

Object Technology Products
IBM Corp.
Austin, TX 78758

ABSTRACT

We present a revision of the hierarchical, modular
Discrete Event System Specification (DEVS) mod-
eling formalism. The revision distinguishes between
transition collisions and ordinary external events in
the external transition function of DEVS models.
Such separation enables us to extend the modeling ca-
pability of the collisions. The revision also does away
with the necessity for tie-breaking of simultaneously
scheduled events, as embodied in the select function.
The latter 1s replaced by a well-defined and consis-
tent formal construct that allows all transitions to
be simultaneously activated. The revision provides a
modeler with both conceptual and parallel-execution
benefits.

1 INTRODUCTION

The Discrete Event System Specification(DEVS) for-
malism was introduced in the early 70s and later ex-
tended to enable constructing discrete event simula-
tion models in a hierarchical, modular manner (Zei-
gler 1976, 1984). Not only does it provide a power-
ful modeling methodology but also a framework for
model behavior generation via its abstract simulator
concepts (Zeigler, 1990).

Hierarchical modeling capability is increasingly
being recognized as the predominant modeling
paradigm for future simulation developments. Sar-
gent (1993) lists the advantages of such capability
as: reduction in model development time, support
for reuse of a database of models, and aid in model
verification and validation. Although none of the
major existing simulation languages support hierar-
chical modeling, research environments have emerged
over the last few years (Zeigler 1990, Praehofer 1993,
Rozenblit and Janknski 1990, Kim 1994) and com-
mercial simulation vendors are showing interest (Peg-
den and Davis 1992). Distributed and parallel sim-

716

Bernard P. Zeigler

Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721

ulation has also received increasing interest as simu-
lations become more time consuming and geographi-
cally distributed (Fujimoto 1990, Lubachevesky et al.
1989, Preiss 1991).

As with all modeling methodologies, the DEVS
simulations are prone to manifest behaviors that
are difficult to conceptualize as real life phenomena.
Radiya and Sargent (1994) introduced a logic-based
foundation to study the semantics of these mappings.
Multiple state transitions at the same simulation time
lead to such non-intuitive behavior. We use the term
transition collisions to represent mutually interfering
simultaneous events. Such collisions can happen ei-
ther between internal and external transitions (simply
referred to as collisions) or between multiple external
transitions (referred to as simultaneous events). The
latter can occur when a DEVS model is constructed
by coupling component models together. In either
case, the model behavior generated is tricky to fol-
low and may easily deviate from that intended if the
collisions are not handled properly.

In discrete event languages, it is a modeler’s re-
sponsibility to understand the model coupling and
collisions and to modify a model to make sure that the
collisions are well handled and explainable. In this ar-
ticle, we emphasize the handling of the collisions and
propose a generalized Parallel DEVS specification in-
tended to facilitate proper modeling of both kinds of
the collisions within coupled models. As an impor-
tant result, the generalization exhibits increased par-
allelism that can be exploited in a parallel /distributed
simulation.

The article reviews the DEVS formalism and dis-
cusses the motivation behind the revision. The Par-
allel DEVS formalism is then introduced and shown
to provide the means for properly handling the col-
lision problems. The formalism is also shown to be
closed under coupling, thus preserving hierarchical,
modular construction properties. The construct leads
to the definition of an Parallel DEVS abstract simu-

Parallel DEVS 717

lator which correctly implements the formalism and
exploits the increased parallelism.

2 THE ORIGINAL DEVS FORMALISM

DEVS is the formalism that allows a modeler to spec-
ify a hierarchically decomposable system as a discrete
event model that can be later simulated by a simula-
tion engine. Several DEVS formalisms evolved from
the original one to introduce specializations for dif-
ferent purposes. This section reviews the original
formalism and discusses the reasons behind the re-
visions.
The original DEVS model is a structure:

M =< X,8Y, bint, bext, A ta >

X: a set of external events.
S: a set of sequential states.
Y: aset of output events.
8int ' S — S : internal transition function.
bezt : @ X X — S : external transition function,
where Q = {(s,e)|s € 5,0 < e < ta(s)} and
e 1s the elapsed time since last state transition.
A:S — Y : output function.
ta:S — Ryg_.e : time advance function.

The DEVS model transits among the states, S,
via its transition functions. When no external event
occurs, the time of an internal state transition is de-
termined by the ta applied to the current state. The
new state of the model is determined by &;,; applied
to the old state. Right before any internal transition,
the model can generate an output event that depends
on the state before the internal transition. A state
transition can happen when an external input event
occurs as well. The 6.;; determines the new state
based on the current state, the time elapsed in this
state, and the external event.

The transition sequences are illustrated in Fig-
ure 1. $2 = bins(sl), s3 = 6int(s2), and etc. are
the internal transitions when no external event oc-
curs. ta(s2), ta(s3), and etc. determine the time of
an internal state transition. yl = A(sl), y2 = A(s2),
and etc. are the output events generated before the
internal transitions. When the external input event,
zl, i1s received, the resulting external transition de-
pends on the current state, s4, the elapsed time, €4,
and the input event, z1, to determine a new state,
8D = bezt(s4,e4,1).

A coupled model is a structure:

DN =< Xse[f,)/selfy D1{Mi}y{li}){Zi,j}yseleCt >

D: a set of components.
for each 7 in D,

ceqescecccceccahenacccaaa

L2 R D (i e g
sS
sl 56
3 HER S-S SR
N : C e
o P P PooT
! IR P P :
Y| 1 H H H H 1
S $ o y
Pk]
= e sara B a7

D) CohE) ¢ el oty ¢ e

Figure 1: State Transitions of a DEVS Model

M; is a component.
for each 7 in DU {self},

I; 1s the influencees of 1.
for each j in I;,

Z;,; is a function, the i-to-j output translation.
select is a function, the tie-breaker.

The structure is subject to the constraints that for
each 7 1n D,
M; =< X}, 5;, Y, 6, X, ta; >,
I; is a subset of D U {self}, 7 is not in I;,
Zself,j : Xself - Xj)
Ziself Yy = Yeely,
Zz',j . Yl — 1\']'.
select : subset of D — D,
such that for any non-empty subset F,
select(E) € E.

A coupled model groups several DEVS models into
a composite which can be regarded as yet another
DEVS model. Due to this closure under coupling
(Zeigler 1984), models can be constructed in hierar-
chical fashion from atomic DEVS models (A DEVS
model that is not constructed by using a coupled
model is called an atomic model.).

In the abstract simulator concept (Zeigler 1984),
the simulation of the atomic and coupled models is
carried out by processors called simulators and co-
ordinators respectively. Basically, the simulation is
triggered by receiving simulation messages, (*,t) and
(z,t), which in turn sequentially invoke outputs, ex-
ternal transitions and finally schedule new internal

718 Chow and Zeigler

transitions at future times given by the ta functions.

In this DEVS structure and its serial co-ordinator,
a modeler must employ the select function as a tie-
breaker of simultaneously scheduled internal events.
The formalism allows a model state to exist either
at both the boundaries of the elapsed time interval:
e = 0 and e = ta(s), both of which represent the time
of internal transition. In coupled models, ambiguity
arises when an external event is received by a model
at the same time of its scheduled internal transition
— which elapsed time should be used by the external
transition function, e = 0 or e = ta(s)? A select func-
tion solves this ambiguity by choosing, as active, one
from the set of imminent components (those sched-
uled to make internal transitions at the current sim-
ulation time): for this selected component, e = 0; for
the others, e = ta(s).

Although reflecting the approaches of conventional
serial simulation languages, this tie-breaking ap-
proach is a potential source of error. The serial-
ization 1t engenders may not properly reflect the
co-occurrence of events in the system being mod-
eled, particularly among mutual influencing immi-
nent components. Moreover, the serialization reduces
the possible exploitation of parallelism among concur-
rent events. When interpreted in a parallel simulation
environment, it is appropriate to parallelize the han-
dling of simultaneously scheduled events to achieve
the greater speedup.

2.1 The Extended DEVS

The Eztended DEVS(E-DEVS) formalism (Wang
1992, 1993) attempts to exploit parallelism by re-
moving the select function. However, in its place a
new order function is added to the coupled model
which serializes the execution of simultaneously re-
ceived external events. Because of this arrangement,
event queues are used to hold the external events ar-
riving at the same time. The select function can be
removed because the E-DEVS formalism predefines
the behavior of a component model at a collision time
to be s = bert(bint(s),0,z). This means that if a col-
lision occurs, the internal transition is always carried
out first and the colliding external transition function
is then applied to the new state spey = bine(s), with
e=0.

However, the use of an order function is still unsat-
isfactory since a modeler still has to understand the
interrelationship between the different external tran-
sitions to correctly choose an order function. More-
over, if an interdependency exists among two or more
external transitions, the order function cannot cor-
rectly model the joint effect of these events. This

limitation is similar to that of the select function it
replaces.

In the DEVS formalism the input event set can
be defined to be the power set (set of all subsets)
of a set of events. The external transition function
then regards the occurrence of a subset (simultaneous
events) as a single event. Although both the original
and the E-DEVS formalisms allow the event set to
be a power set, the abstract simulators do not sup-
port this concept. They both treat the simultaneous
events sent to a component in sequence. The paral-
lelism among the simultaneous external events is not
exploited.

From the above discussion, several properties are
desirable for the newly revised DEVS formalism.

Collision Handling: The behavior of a collision
must be controllable. Predefining a collision be-
havior is a limitation on the modeling capability
that is not a necessary price to pay for paral-
lelism.

Parallelism: The formalism must not use serializa-
tion function that prohibits possible concurren-
cies. The parallelism among the internal transi-
tions and simultaneous events must be fully ex-
ploited.

Closure: The formalism must be closed under cou-
pling and thereby, support hierarchical construc-
tion.

Hierarchical Consistency: The hierarchical con-
struction must render a uniform behavior in
that different hierarchical constructs of the same
model must display the same behavior.

The Parallel DEVS formalism was developed in or-
der to address these requirements.

3 THE PARALLEL DEVS

Based on the above discussion, we find that the key
to meet these requirements is to properly handle col-
lisions, i.e. the behavior when a component receives
external events at the same time as its prescheduled
internal transition. Previous solutions attempt to de-
fine the collision behavior implicitly either through
the select function or by imposing the priority of an
internal transition over a colliding external transition.

In contrast, the Parallel DEVS(P-DEVS) formal-
ism structure proposed here enables a modeler to ex-
plicitly define the collision behavior by using the so-
called confluent transition function, 6.0x.

M =< ‘\') Sv Y; 6int: 661‘1) 66071))‘\ ta, >

Parallel DEVS 719

= Poore sy P
: .] s4 0 . ' 3
: SN Y Y
v 82 & :
51 h . s6
: R L Lo
N Pl P
A
N 1’5 At
i |
#od :
» e sara = - 7
"fa2) ' (asl) ' et fass) ‘es ! '

Figure 2: State Transitions of a Parallel DEVS Model

X: a set of input events.
S: a set of sequential states.
Y: aset of output events.
bint : S — S: internal transition function.
ezt 1 Q X X* — S: external transition function,
X" is a set of bags over elements in X,
5ert(5; € ¢) = (S) 6)'
bcon 1 S x X* — S: confluent transition function.
A :S — Y?: output function.
ta:S — Rg+_o: time advance function,
where @ = {(s,e)|s € 5,0 < e < ta(s)},
e is the elapsed time since last state transition.

dcon 1s the difference from the previous DEVS for-
malisms. It gives the modeler complete control over
the collision behavior when a component receives
events at the time of its internal transition, e = 0 or
e = ta(s). Rather than serializing model behavior at
collision times, the P-DEVS formalism leaves this de-
cision of what serialization to use, if any, to the mod-
eler. Indeed, if so desired, the E-DEVS formalism can
be recovered by setting 6con(s,:cb) t0 bezt(sn, 0, z5),
where n > 1, 51 = 6int(), Sn = ezt(Sn-1,0,2n_1)
when n > 1, and z, is a desired serialization defined
by Order(z?®).

The semantics of the Parallel DEVS are illustrated
in Figure 2. The internal transitions are carried out
at the next event time for all imminent components
receiving no external events. Also, external events
generated by these imminents trigger external transi-
tions at receptive non-imminents (those components
for which there are no internal transitions scheduled

at the event receiving time). However, for those com-
ponents for which the internal and external transi-
tions collide, the confluent transition function is em-
ployed instead of either the internal or external tran-
sition function to determine the new state. In Fag-
ure 2, all the state transitions are the same as those
in the original DEVS formalism except at ¢2 and
t5 where collisions occur. At these instances, the
new states are defined to be s3 = 6.0n(s2,23) and
S6 = bcon(ss,zs). We still need the bag, z°, to col-
lect simultaneous external events generated by inter-
nal and confluent transitions.
"The structure of the revised coupled model is —

DN =< X,Y, D {M;},{L},{Z:;} >

X: aset of input events.
Y: a set of output events.
D: a set of components.
for each 7 in D,
M; is a component.
for each 7 in DU {self}, I; is the influencees of i.
for each j in I;,
Zi; 1s a function,
the i-to-j output translation.

The structure is subject to the constraints that for
each 71n D,
Mi =< Xi, Si, },i, 6intiy 651-“, ’5coniy ta; > isa P-DEVS
structure,
I; is a subset of D U {self}, ¢ is not in I;,
Zaelf,j : Xself - Xj)
Zi,self Y — Yself;
Zij Yy — X;.

Here self refers to the coupled model itself and is
a device for allowing specification of external input
and external output couplings.

4 CLOSURE UNDER COUPLING

The demonstration of the closure is done by
constructing the resultant of a coupled model
and showing it to be a well defined P-DEVS.
The resultant of a coupled model (DN =<
X,Y, D, {M;},{L;},{Z:;} >) is a P-DEVS model
(M =< X, S, Y, 6,‘,—”, 6351, 6,;0“, A, ta >), where
S = xQ; where 1 € D.
ta(s) = minimum{o;|i € D},

where s € S and o; = ta(s;) — e;.
Let

s = (, (Si, e,'),),

IMM(s) = {i]o; = ta(s)},

INF(s) = {jlj € Uiermm(s) Li},

CONF(s)=IMM(s)NINF(s),

720 Chow and Zeigler

INT(s) = IMM(s) — INF(s).
EXT(s) = INF(s) — IMM(s).

We partition the components into four sets at any
transition time. INT(s) contains the components
ready to make an internal transition without input
events. E.XT(s) contains the components receiving
input events but not scheduled for an internal tran-
sition. CON F'(s) contains the components receiving
input events and also scheduled for internal transi-
tions at the same time. U/ N(s) contains the remain-
ing components. Then,

A(s) = {Zi,se,f()\ (si))]i € IMM(s) Aself € I}.

6i’ﬂt(s) = (1(Siy 1))

where
(si,er) = (6int;(s:),0) for i € INT(s),
(sh,el) = (becri(si, ei+ta(s),xl),0) for i € EXT(s),
(styel) = (6coni(si,xf~’),0) for i € CONF(s),
(si,e}) = (si,e; +ta(s)) otherwise i € UN(s),

2 = {Zy:(Mo(s0))|0o € IMM(s) Ai € I,}.

The resultant internal transition comprises of four
kinds of component transitions: internal transi-
tions of INT(s) components, external transitions
of EXT(s) components, confluent transitions of
CONF(s) components and the remainder,UN(s),
whose elapsed times are merely updated by ta(s).
(The participation of I/ N(s) can be removed in simu-
lation by using an absolute time base rather than the
relative elapsed time.)

Note that by assumption, this is an internal transi-
tion of the resultant model, and there is no external
event being received by the coupled model at this
time.

Next, we construct the é.,; of the resultant.
bezt(s,e,28) = (..., (sh,€l),..),
where

(st et) = (bexti(si,ei+e,x?),0) for i € Lsei,

(si,er) = (s;,¢e; + e) otherwise,
and

I’? = {Zselj,i(l')l-l' (S oA S Iselj}~

The incoming event bag, r? is translated and
routed to the event bag, ,-, of each influenced child,
J. The resultant’s e\ternal transition comprises all
the external transitions of the influenced children.
Finally, we construct the §,,, of the resultant.
Let
INF'(s) = {jlj € Uie(rararisyugseisy) i},
CONF(s) = IMM(s)NINF'(s),
INT'(s) = IMM(s)— INF'(s),
EXT'(s) = INF'(s) —]MM(s
beon(s, %) = (.., (sh,€h),..),

where
(Sl’el)
t’ z) _(erh(sz)ez +ta(3) 17 0)
for IS E‘\T’(),
(si,€7) = (bconi(si, T;
(si,e;) = (s; e +ta(s)
and
28 = {2 (Mol(s0))lo € IMM(s) Ni € L)}
{Zself,i(f)l-r S b A (S Iself}-

(8inti(si),0) for 7 € INT’(s),

%),0) for i € CONF'(s),
s)) otherw1se

To establish closure under coupling, we must also
consider how to define the é.,, of the resultant, 1.e.,
what happens to the coupled model when some of the
children are scheduled to make internal transitions
and are also about to receive external events origi-
nating outside the boundaries of the model. Fortu-
nately, it turns out that the difference between é,.,, of
the resultant and its é;,¢ is simply the extra confluent
effect produced by the incoming event bag, z°, at sim-
ulation time ta(s). By redefining the influencee set
to INF'(s) that includes the additional influencees
from the incoming couplings, z(self, i), we come up
with three similar groups for é,,,. The hierarchical
consistency 1s achieved here by the W operation that
gathers all external events, whether internally or ex-
ternally generated, at the same time into one single
event group.

Examining the application of the three transition
functions, we see that the semantics of the applica-
tions of the three transition functions are maintained
throughout the hierarchical composition. IM M(s)
identifies components with e; = ta(s). Compo-
nents that are not in /M M(s) have elapsed times,
0 < e < ta(s). INF(s) identifies components with
z? # ¢ (the empty bag). Combining IMM(s) and
INF(s), we can identify which function should be
applied to which component easily. For example,
bcon 18 strictly applied to elements in CON F(s) =
IMM(s) N INF(s) which only contains components
with e; = ta(s) and 2! # ¢.

From the definition of the 8;,¢, 6.0n, and 6eg:, we
see that they are special cases of a more generic tran-
sition function é(s, e, z°)(Zeigler 1984). 6, is applied
to the cases when (s, ¢, 2%) = (s, ta(), @), beon to the
cases when (s, e, :vb) = (s,ta(s), z*) where z° 75 @,
and, 6., to (s, e, 2’) where 0 < e < ta(s) and z* # ¢.

Because of the distinctive semantics among the
three transition functions at the atomic model level,
it is advantageous for a modeler to deal with three
different semantics individually rather than lumping
them into one generic transition function. However,
for the resultant model, and transparent to the mod-
eler, the three transition functions can be merged into
a more generic transition function so that the same

Parallel DEVS 721

implementation can be reused by all transitions.
beon (s, 2%) = 6(s, ta(s), zb),

bezt(s,€,2%) = (s, e, 2?) for 0 < e < ta(s), and
bint(s) = 8(s, ta(s), ¢),

To summarize, here is the generic transition func-
tion.

where
(sirer) = (6i(si,ta(s), ¢),0) where i € INT(s),
(s7,€7) = (6i(si, ei + e, 28),0) where i € EXT(s),
(si,ei) = (b:(si, ta(s), x?),0) where i € CON F(s),
(si,el) = (si,e; + ¢) otherwise,

and

2! = {Z,i(Ao(s,)) o € IMM(s) A i € I,}¥
{Zself,i(x)ll' et A € Iself}~

A single level abstract simulator has been pro-
totyped on the CM-5 massively parallel computer
(Chow and Zeigler 1994).

5 CONCLUSIONS

The state that the external transitions and output
functions see must be uniquely determined for a
model at any given time. The original DEVS for-
malism provides a way to uniquely determine states
but sometimes in a non-intuitive manner because of
the serial nature of its abstract simulator. Eztended
DEVS formalism helps modelers define the unique
state by first carrying out internal transitions and
than external transitions at the same simulation time.
Though this approach renders more intuitively as-
serted models and exposes parallelism, it severely lim-
its the latitude of control over the model’s collision
behaviors.

In the Parallel DEVS formalism, a modeler is re-
quired to supply the additional confluent transition
function that captures the collision behavior. This
function allows the coupling construction to follow
the semantics of a collision down to the atomic level.
Closure under coupling and hierarchical consistency
follow. In addition, this property allows a deep hier-
archical model to be flattened to a single level. This
restructuring can support more efficient simulation,
particularly in sequential environments.

The P-DEVS formalism also supports the bag con-
cept for simultaneous events so that modelers can put
more effort into the design of external transition func-
tions and cornbine executions of several external tran-
sitions into a single one. Not only does this create
more intuitive and correct simulation results, it also
speeds up simulation when many external events oc-
cur at the same time for a given model. The well

isolated transition groups at each coupling level add
to the existing possibilities to exploit the parallelism
of the hierarchical DEVS models.

Finally, the Parallel DEVS provides a sound frame-
work for language developers to experiment with new
forms of discrete event model expression so as to ren-
der the abstract specifications in concrete form. For
example, many language constructs could be devel-
oped for the specification of the confluent transition
function. The logic-based formalism of Radiya and
Sargent (1994) is suggestive in this context.

ACKNOWLEDGMENTS

This research was partially supported by NSF HPCC
Grand Challenge Application Group Grant ASC-
9318169 with ARPA participation and employed the
CM-5 at NCSA under grant MCA94P02

REFERENCES

Chow, A. C., and B. P. Zeigler. 1994. The simulators
of the Parallel DEVS formalism. Proceedings of
the Fifth Annual Conference on Al, Simulation and
Planning in High Autonomy Systems, not final.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Communications of the ACM, 33(10):30-53.

Kim, T. G. 1994. DEVSIM++ User’'s Manual,
CORE Lab, EE Dept, KAIST, Taejon, Korea.

Lubachevesky, B., A. Weiss, and A. Schwartz. 1991.
An analysis of rollback-based simulation. ACM
Transactions on Modeling and Computer Simula-
tion, 1(2).

Pegden, C. D., and D. A. Davis. 1992. Arena TM : A
SIMAN/CINEMA based hierarchical modeling sys-
tem. Winter Simulation Conference Proceedings,
Phoenix, AZ.

Praehofer, H. 1993. An environment for DEVS-based
multiformalism simulation in common Lisp/CLOS.
Discrete Event Dynamic Systems, 3.

Preiss, B. 1989. The Yaddes distributed discrete
event simulation specification language and execu-
tion environment. Distributed Simulation 89. SCS
Press.

Radiya, A., and R. G. Sargent. 1994. A logic-based
foundation of discrete event modeling and simula-
tion. ACM Transactions on Modeling and Com-
puter Simulation, 4(1).

Rozenblit, J. W., and P. Janknski. 1990. An in-
tegrated framework for knowledge-based modeling
and simulation of natural systems. Simulation,
57(3).

Sargent, R. 1993. Hierarchical modeling for discrete
event simulation (panel). Winter Simulation Con-

722 Chow and Zeigler

ference Proceedings, page 569, Los Angeles, CA.

Wang, Y. H. 1992. Discrete-event simulation on a
massively parallel computer, Ph. D. dissertation,
Dept. of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ.

Wang, Y. H., and B. P. Zeigler. 1992. Extending
the DEVS Formalism for Massively Parallel Simu-
lation. Discrete Event Dynamic Systems: Theory
and Applications, 3:193-218.

Zeigler, B. P. 1976. Theory of Modelling and Simula-
tion. Wiley-Interscience, New York, 1976.

Zeigler, B. P. 1984. Multifacetted Modelling and Dzs-
crete Event Simulation. Academic Press, London.

Zeigler, B. P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press,
San Diego, California.

AUTHOR BIOGRAPHIES

ALEX CHUNGHEN CHOW has joined IBM
Corporation since 1991. He received his B.S. and
M.S. degrees in Electrical Engineering from National
Chiao-Tung University in Taiwan, and his Ph. D. de-
gree in Electrical Engineering from the University
of Arizona in 1990. His research interests include
visual programming environment, system modeling
and simulation, graphical user interface, and object-
oriented programming framework.

BERNARD P. ZEIGLER is a professor of Elec-
trical and Computer Engineering at the University of
Arizona, Tucson. He received his B.S. Eng. Phys.
from McGill University, 1962, M.S.E.E. from MIT,
1964, and Ph. D. from the University of Michigan
in 1969. He has published over two hundred jour-
nal and conference articles in modelling and sim-
ulation, knowledge based systems and high auton-
omy systems. His first book “Theory of Modelling
and Simulation” (Wiley,1976) is regarded as one of
the foundational works in the field. A second book
“Multifacetted Modelling and Discrete Event Simu-
lation” (Academic Press, 1984), was given the out-
standing simulation publication award Concepts de-
veloped in earlier work are implemented in the DEVS
simulation environment and applied to high auton-
omy issues in the latest book, “Object-oriented Sim-
ulation with Hierarchical, Modular Models: Intelli-
gent Agents and Endomorphic Systems” published by
Academic Press, Boston, 1990. Zeigler’s research has
been supported by federal agencies including NSF,
NASA, USAF, and the US Army, as well as indus-
trial sponsors including Siemens, McDonnell Douglas,
and Motorola. He is currently heading a multidisci-
plinary team to demonstrate an innovative approach

to massively parallel simulation of large scale ecosys-
tem models within NSF’s HPCC Grand Challenge
initiative. He was elected as Fellow of the IEEE for
his innovative work in discrete event modelling the-
ory.

