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ABSTRACT

The Nelder-Mead simplex algorithm has been used for
sequential optimization of simulation response functions.
The rescaling operations of this algorithm can lead to
inappropriate termination at non-optimal points. We
have used the probabilistic characterization of this
behavior to develop special rules for determining the
number of replications to take for each experimental
design point. Computational experiments indicate that
the quality of the solution is often improved.

1 INTRODUCTION

Complex discrete-event simulation models of proposed
or existing real systems are often used to estimate the
effects on system performance due to changes to the
system design. A natural extension of this evaluative use
of simulation is optimization: to look for a system
design that produces the optimum system performance.
In optimization studies, a numerical output of the
simulation is selected as the objective for optimization.
For discrete-event simulation models, this objective is
usually derived from pseudorandom quantities, and so
optimization algorithms designed for deterministic
functions are often ineffective.
Mathematically, the optimization problem is to
minimize E(F(x)), xeR", (1)
where F is the stochastic response function of a
simulation model. The stochastic response can be written
as

F(x) =f(x) + e(x), 2
where f(x) is the deterministic function E(F(x)) and
&(x) is a stochastic function with E(e(x)) = 0 for all
x. Then the optimization problem is to

xeR",

©)

minimize f(x),
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This paper focuses on the Nelder-Mead method
(Nelder and Mead 1965), which was originally
developed for unconstrained optimization of
deterministic functions, but which has been applied
frequently to the optimization of stochastic simulation
models. The method is somewhat effective because the
algorithm's steps depend only on the relative ranks of the
objective function values for different system designs,
rather than on the precise values. Many other
optimization methods are available for simulation
optimization. See for example the recent survey articles
by Azadivar (1992), Fu (1994) and Spall (1994).

Barton and Ivey (1995) observed inappropriate early
termination of optimization for the original Nelder-Mead
method. We examine modifications that make Nelder-
Mead more effective when applied to stochastic
responses.

The optimization is posed as a minimization problem.
We will call f the objective function and F the
response function. Typically fis not known explicitly,
and the optimization method must work with F.  For
stochastic simulation optimization, the response function
is computed from the output quantities of one or many
replications of the simulation.

2 THE NELDER-MEAD ALGORITHM

The Nelder-Mead (1965) simplex method incorporates
operations to rescale the simplex based on the local
behavior of the function. Simplex reflections are
expanded in the same direction if the reflected value is
particularly good. A poor value results in a contraction.
If the function value at the contracted point is poorer yet,
the overall size of the simplex is shrunk. The original
Nelder-Mead rules are outlined below.

Step 1. Initialization: For a function of n parameters,
choose n+1 extreme points to form an initial n-
dimensional simplex. Evaluate the response function
F(x;) at each point (vertex) x; of the simplex for i = 1,
2,.,n+ 1
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Step 2. Stopping Criterion: [terations continue until
the standard deviation of the n+I1 response function
values at the extreme points of the szmplex,

S (F(x) -F)2 (n + DI with F =
fF(x)/ (n + 1), falls below a particular value, or
when the size of the simplex becomes sufficiently small,
or until the maximum number of function evaluations is
reached.

Step 3. Reflect Worst Point: At the start of each
iteration, identify the vertices where the highest, second
highest, and lowest response function values occur. Let
Phighs Psechir Prow respectively denote these points, and
let Frigh, Fsechir Flow respectively represent the
corresponding observed function values. Find P___,

the centroid of all points other than Pygn. Generate a
new point P,y by reflecting Pyign through P .
Reflection is carried out according to the following

equation, where a is the reflection coefficient (&> 0):

Pmﬂ=(]+a)P -O(Phigh.

cent

Nelder and Mead used o = 1.

Step 4a. Accept Reflection: If F < Frq S Foeeni,
then P.q replaces Py, in the simplex, and a new
iteration begins (Step 2 above).

Step 4b. Attempt Expansion: If F.. < F\ . then
the reflection is expanded, in the hope that more
improvement will result by extending the search in the
same direction. The expansion point is calculated by
the following equation, where the expansion coefficient
isy(y>1):

cxp )Preﬂ + (1 Y)Pcenl

Nelder and Mead used y = 2. If Feyp, < Fioy, then PexP
replaces Pygp in the simplex; otherwise, the expansion
is rejected and P..q replaces Py, The next iteration
begins with the new simplex (Step 2 above).

Step 4c. Attempt Contraction: If the reflected point
has the worst response function value in the new
simplex, (i.e., Frn > Fsecni) then the simplex
contracts. If Fren < Fhigh, then Py replaces Py,
and Fqreplaces Fyg, before attempting contraction
or shrinking. The contraction point is calculated by the
following equation, where the contraction coefficient is

B(O<B<1):
Peom = ﬁPhigh +(I - B)Pcenl'

Nelder and Mead used B = 0.5. If Feoni < Frign, then
contraction is accepted and the algorithm continues
with the next iteration (Step 2 above).

Step 4c'. Shrink: If Fooni > Fhigh, then the
contraction has failed, and the entire simplex shrinks by
a factor of 6 (0 < 8 < 1), retaining only Py,,,. This is
done by replacing each exireme point P; (except Py,)
by:

Pi(—&)i+(1'5)Plow

Nelder and Mead used 6 = 0.5. The algorithm then
evaluates F at each point (except P\,,) and continues
with the next iteration (Step 2 above).

One of the following stopping criteria are usually
employed. Nelder and Mead computed the standard
deviation of the (deterministic) objective function values
over all n+1 extreme points, and they stopped when the
standard deviation S dropped below 108, where:

= (X () - )% (n+ D)2,

with f = 2, f(x;))/ (n + 1) For stochastic functions,
the standard deviation of function values across all
simplex points reflects inherent stochastic variation as
well as differences in (expected) function values. For
stochastic function optimization, the calculations are
based on F rather than f, and the stochastic component
£1n equauon (2) will typically have a standard deviation
o= [E(€%)]'/? much greater than 10°°, making this rule
1nappropnate A stopping criterion based on simplex
size was proposed by Dennis and Woods (1987). The
stopping criterion is

(1/a) max, IP,- P, <y, A=max(1,IP_ ) @)

where the maximization is over all points i in the
current simplex, and |l « [l denotes the Euclidean norm.

2.1 Inappropriate Termination

Using the Dennis and Woods criterion with v=1x10 4,
Barton and Ivey (1995) found that the Nelder-Mead
method could terminate at a point that was far from the
optimum for some response functions. This problem
was further investigated by Tomick (1995), who found
that for n = 1 or 2, Nelder-Mead (without any stopping
criterion) converged to a point on a constant test
function, with finite expected movement.

Further, for n = 1, Tomick proved that there is a
nonzero probability of convergence of Nelder-Mead for
linear f when &(x) in (2) has a nondegenerate Gaussian
distribution. Empirical tests indicated a nonzero
probability of convergence for n > 1 as well. For any
given standard deviation o, for g, the probabnhty of
false convergence decreases as the magnitude of the
slope increases. Of course, convergence on a linear
function is false convergence.
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2.2 Barton and Ivey's RS9 Modification

The shrink step (Step 4c¢") causes rapid decrease in the
overall size of the simplex. Barton and Ivey (1995)
found that changing the shrinkage coefficient from § =
0.5 10 & = 0.9 generally improved the performance of
the method on stochastic functions. In addition, the
original algorithm did not require resampling the
simulation response at the best point of the simplex after
a shrink step. Resampling this point tended to reduce the
likelihood of retaining a spuriously good response, and
improved performance. The modified method
implementing both of these changes was referred to as
RS9.

2.3 Hypothesis Test Modifications

Based on a Markov chain analysis for the n = 1 case,
Tomick (1995) proposed additional modifications to
RS9:

» replace § = 0.5 with 6 = 0.9 in Step 4c.

» compute the response value at a vertex in the kth
iteration as the average of m replications of the
simulation, where m* is defined as described
below.

Tomick proposed two methods to choose the number
of replications m*: using standardized range
distributions, or using one-way analysis of variance
(ANOVA). The ANOVA mecthod for setting m* tcsts
the hypothesis that the response means (i.c., objective
function values) at the n + 1 vertices are equal. If the
test is accepted, the sample size is increased by a factor
b

mk+ 1 =Lbm) if (S2n) [ (62 < 3%,
and if the test is rejected, the sample size is decrcased by
the same factor:

mk+ L =Lmk b)  if (S%n) /(6D > %2, o
The mean square for treatments from the ANOVA 1is
used for S2. Tomick called this modificd mcthod
NMSNV. For the empirical comparisons below, b was
set to 1.25.

3 EMPIRICAL PERFORMANCE OF THE
ANOVA MODIFICATION

To compare results with Barton and Ivey (1995) our tests
employed a set of eighteen dcterministic functions
compiled by Moré, Garbow, and Hillstrom (1981). The
form, standard starting points, and optimal values for the
functions are described completely in that reference, and

arc available via the MINPACK collection in NETLIB
(Dongarra and Grosse 1987). They are a set of
dcterministic objective functions for difficult
unconstrained minimization problems. The number and
varicty of functions allows a good assessment of
robustness with a reasonable investment in computation
time. Many of these functions allow a choice of
dimension: we chose values to provide test functions
with input parameter dimensions that ranged from 2 to 9.

The starting points for our tests were not the standard
starting points, however. For the results discussed
below, starting points were selected to provide an initial
objective function that was 1008 larger than the optimal
value. These starting values are summarized in Table 1.
The computational tests included forty optimization runs
with starting points perturbed by adding a uniform(-0.1,
0.1) dcviate to each coordinate. Computational
comparisons using other starting points are discussed in
Tomick (1995).

Table 1: Starting Points for Test Functions

Function Starting Point

Helical Valley (5,25,-17.74)
Biggs EXP6 (10, -2,20,-4.9,-1.5,4.9)
Gaussian (6.28,-0.1, -5)
Powell Badly Scaled (0.01,3.2)
Box 3D (-5.5, 4, -20)
Variably Dim. x;= (4 - jim)(-1y*1
Watson xj= -1.32
Penalty 1 xj=1.25j
Penalty 11 xj=3
Brown Badly Scaled (9.999E+05, 5.0E-06)
Brown & Dennis (-8,11,-5,0)
Gulf R&D (-0.95,1,0.4)
Trigonometric x;=0.71/8
Extended Rosenbrock X = 4.4(-1y+!
Extended Powell  (3,-9, 1.5, 10, 3, -9, 1.5, 10)
Beale (2.5, 6)
Wood (-5,-2,-5,7)
Chebyquad x;= 0.1+ 0.34

Table 2 shows the performance of the original
Nelder-Mcad mcthod (NM), RS9, and NMSNV. Also
included in the test was KW, a naive implementation of
the stochastic approximation method described by Kiefer
and Wolfowitz (1952). The numbers shown are the
average gap bctween the objective function value at the
best simplex point after 1,000 function evaluations and
the true optimum. The numbers are expressed in units of
0,. (remember, the starting point had a gap of 100,).
The undcerlined number in each row indicates the best
average performance for that test function.
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While Barton and Ivey's RS9 performance is
generally superior to NM, NMSNV is superior to RS9
for all but two functions in this set of tests. This was not
uniformly true for other starting points (see Tomick
1995). The Keifer-Wolfowitz method was occasionally
superior to NMSNV, but more often the reverse was the
case. Furthermore, for seven of the eighteen test
functions, KW diverged drastically from the optimal
value, and remained so at 1,000 evaluations (or even
10,000 - see Tomick 1995). These errors were generally
eighty or more orders of magnitude larger, and
occasionally led to termination due to numerical
overflow. Similar difficulties with Kiefer-Wolfowitz
occurred for other starting points as well.

The results differed when the progress was examincd
after only 100 function evaluations. At this early stage
of optimization, KW was superior, except on those
functions where it initially diverged. For functions
where KW failed, RS9 was generally superior after 100
function evaluations.

The NMSNV method's relative superiority increased
further after 10,000 function evaluations. Its overall
superiority increased from 11 to 13 of the 18 functions
(see Tomick 1995).

Table 2: Error After 1000 Evaluations

Method

Test

Func. NM RS9 NMSNV KW
1 9.85 8.63 1.48 8.06
2 0.54 0.30 0.14 0.01
3 0.10 0.06 0.07 0.001
4 0.04 0.04 0.01 -
5 0.54 0.27 0.17 0.12
6 0.46 0.06 0.01 -
7 0.22 0.06 0.03 0.05
8 0.91 0.62 0.12 2.01
9 2.32 1.03 0.62 0.22
10  0.002 0.002 0.003 -
11 3.99 1.75 121 -
12 0.01 0.006 0.004 -
13 0.16 0.11 0.02 1,370
14  0.63 0.31 0.24 0.30
15 5.59 2.98 110 1.25
16 0.01 0.07 0.002 -
17 0.37 0.28 0.20 0.18
18 0.02 0.0004 0.004 -

4 CONCLUSION

Simulation optimization requires optimization
techniques that are designed for stochastic responses.
The original Nelder-Mead unconstrained optimization
method was not designed for stochastic responses, and
consequently the method can terminate at an
inappropriate point.

Two simple modifications to Nelder-Mead, proposed
by Barton and Ivey (1995), often delay the onset of
difficulties for the method. The modified method, RS9
often provided objective functions values less than one
standard deviation from the optimal value in relatively
few function evaluations, but more accuracy was not
possible without making replications at each simplex
vertex.

A new method, NMSNV was developed to choose
the number of replications dynamically as the
optimization progresses. NMSNV gave no indication of
behavior that would lecad to inappropriate termination in
empirical testing. It was able to reduce the error to less
than 20% of the initial value on all of the 18 test
functions (at lest after 1,000 evaluations), which was not
the case for NM, RS9, or KW.
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