Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

BUILDING END USER APPLICATIONS WITH EXTEND™

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, USA.

ABSTRACT

This document presents an overview of the Extend
modeling environment, emphasizing Extend’s features
for building a custom user interface. Extend is a
graphically oriented discrete event and continuous
simulation application with an integrated authoring
environment.

1 INTRODUCTION

Too many simulation models are dull. While simulation
has graduated from the mainframe to the desktop, aside
from animation, few simulation modeling tools are able
to exploit the interactivity possible on a personal
computer. Simulation models can and should be
captivating, encouraging the model user to experiment
and use the model as a tool to explore. Additionally, a
simulation analysis is not complete until the results are
communicated to others and used to support decision
making. This paper will discuss how Extend can be used
to create models that are engaging as well as informative.

Two model examples will be used throughout the
paper to illustrate the use of Extend. The first (discussed
in Sections 2 and 3) is a single server, single queue
system with random arrivals and processing times. The
second model is of a call center environment for medical
advice and appointments. The call center model
compares a proposed system to the existing call system
based on the percentage of calls answered within 1
minute. Section 4 will focus on the user interface and
control panel for the model of the new call center.

2 EXTEND’S MODELING ENVIRONMENT

Before looking into how Extend can be used to build
interactive models, it is helpful to understand the Extend
modeling environment.

Extend models are constructed with library-based
iconic blocks. Each block describes a step in a process or

413

a calculation. Blocks reside in libraries. Each library
represents a grouping of blocks with similar char-
acteristics such as Discrete Event, Plotters, Electronics,
or Business Process Reengineering.

There are two types of logical flows between the
Extend blocks. The first type of flow is items which
represent the objects that move through the system. Items
can have attributes and priorities. Examples of items
include parts, patients, or a packet of information on a
network. The second type of logical flow is for values or
information. Values represent a single number. Examples
of values include the number of items in queue, the result
of a random sample, and the level of fluid in a tank.

Each block has connectors which are the interface
points of the block. Figure 1 shows the connector
symbols for the value and item connectors.

] Ol
Value Input Item Input
o i
Value Output Item Output %

Figure 1: Value and Item Connectors

Connections are lines used to specify the logical flow
from one connector to another. Item connections are
represented by double lines and value connections are
represented by single lines.

A model of single server, single queue system would
have the following form:

LBy D '
Generator Queue, FIFO Activity, Delay Exit

Figure 2: A Single Server Single Queue Model

414

The block on the far left represents a Generator
which periodically creates items. Following this is a
Queue block which holds items until requested by the
next block. The Activity Delay represents a limited
capacity of one processing unit and delays an item for a
fixed amount of time. The last block in the model is an
Exit block which removes items from the system.

An enhancement to this model would be to specify
that the delay in the Activity Delay is determined by a
specific random distribution. This can be done by con-
necting the output of an Input Random Number block to
the delay connector (labeled "D") on the Activity Delay
block as in Figure 3:

Generator Queuse, FIFO

input Random #

Figure 4: A Model With Random Process Times

Another feature that can be added to the model is a
Discrete Event Plotter which graphically displays, in this
example (Figure 5), the contents of the queue. The
Discrete Event Plotter value input connector will be con-
nected to the Queue's length (labeled "L") value output
connector as follows:

Plotter, DE Input Random #

Figure 6: Discrete Event Plotter Added to Model

Simulation parameters such as the number of runs
and simulation end time can be specified in the
Simulation Setup dialog itemn under the Run menu. The
simulation can then be run by selecting the Run
Simulation menu item from the Run menu.

During the run, the current simulation status is dis-
played in a bar near the bottom of the monitor screen.
This displays the estimated time before the run will be
completed, the current simulation run time, the number

Krahl

of simulation steps completed so far, and the current
simulation run number.

Once the simulation run has completed, the results of
the simulation are reported within the blocks. Double
clicking on each block reveals the information collected
from the simulation run. For example, double clicking on
the Queue FIFO block opens a dialog which shows the
following information about the state of the Queue FIFO
block:

Enj
First in, first out queue.

Masximum queue length =

[stop simulation when the queue is full
L and W are: @ continuous
QO histogram

Arrivals{ 10?7 Ave. length;0.23461032496

Departures; 105 Ave. wait;0.26440263836

Utilization:0.1?161325026:Max. length:3

Max. waiti1.85218292869

[2) Queue, FIFD

Bla

Comments

Items wait for processing here ﬁ
Ol 5]
(HeTp)ueve, Firo__ [IEE

Figure 7: Dialog of Queue FIFO

The Plotter block shows the number of items stored
in the Queue FIFO over time in both graphical and
tabular format:

[5] Plotter, Discrete Event

Time

Flgure 8: P]ot of Queue Length

Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to
another program such as a spreadsheet or database, dis-
played in an animation, or even used to control some as-
pect of the computer's operation through external device
drivers.

Extend

3 STANDARD EXTEND LIBRARIES

The standard Extend libraries include constructs for dis-
crete event modeling, results plotting, generic calcula-
tions, electronics design, interprocess communication,
and utilities. For discrete event modeling, the most
commonly used standard libraries are the Discrete Event,
Generic, and Plotter. Additional, optional, discrete event
libraries include the Business Process Reengineering and
Manufacturing libraries.

Extend supports the following general modeling
functionality for discrete event modeling:

e Attributes - Unique variables which are local to the
items moving through the simulated system.

e Priorities - A unique value, local to a given item,
which can be used to rank items in a queue or in-
terrupt items in process.

e Values - The number of items represented by a
single item. Setting a value will create clones of an
item when that item arrives to a queue, resource, or
exit block.

3.1 Discrete Event Library

The Discrete Event library contains blocks which are
specific to modeling discrete event systems. In a discrete
event model, the clock will update at intervals dictated
by the individual events in the system. The discrete event
blocks pass items to one another through their item
connectors. If a discrete event block is unable to receive
an item it rejects it and the item waits until it receives a
downstream request.

> o

31165 1308k 706495 10:53 AM

Activity, Delag oA
Wed, Jul 05,1335 152 PM

Activity, Delag [Attributes)
Wed, Jul 05,1395 152 PM

Activitg, Multiple
Wed, Jul 05,1395 152 P

Activity, Service .mt.z
wed, Jul 05,1995 1.52 Pr

TRER

Figure 9: Discrete Event Library Window

The most commonly used block types in the Discrete
Event library are as follows:

e Activities - Time delays
e Batching - Combining of items

e Resources - Limits capacities

415

¢ Decisions - Chooses alternate paths

3.2 The Generic Library

The Generic library is used for both continuous and
discrete event modeling. In the continuous mode,
calculations are performed at each evenly spaced clock
step. In the discrete event mode, calculations are made in
response to a request (message) from a discrete event
block.

When used with Discrete Event library, the Generic
library is typically used to provide values for inputs or
operate on the value outputs of the discrete event blocks.
Typical examples of using the Generic library in this
mode include using a Decision block to compare the
length of two queues or using an Input Random Number
block to generate a random time delay for an Activity.

There are a number of classes of generic blocks.
These include: mathematical calculation, integration, file
operations, logical calculations, integration, statistical
calculations, error reporting, simulation events (such as
playing a sound or displaying a dialog), accumulation,
and threshold detection.

3.3 Other Libraries

In addition to the above libraries, Extend also includes
libraries for statistics, animation, plotters, utilities, elec-
tronics, filters, digital circuits, controls, and DLLs or
XCMDs. Libraries are available from third party
developers for control systems, paper manufacturing,
neural networks, biology, and signal processing.

4 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend is also
malleable: it can take the shape of the model application.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating
a new one, the simulation modeler is able to create a
model which can be exercised by someone more familiar
with the system than with the simulation tool. Models
can be built that fit naturally into the conceptual
framework of the person using the model. In Extend, this
can be done with a range of tools, including:

e Hierarchical modeling - Models can be subdivided
into logical components.

e Dialog cloning and the Notebook - Consolidate
critical parameters and results to a central location.
This can be used to create a custom user interface.

