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ABSTRACT

This paper identifies underlying issues associate with
simulating those classes of problems which require both
arbitary spatial and temporal precision and which must
deal the with the complexities of a multitude of
asynchronous pair-wise interactions occuring among a
dynamic non-uniform distribution of numerous spatial
components. The principal issue of interest discussed
focuses on a proposed simulation modeling
methodology which dynamically sectors the trajectory
space based on the number of spatial objects occupying
a portion of the trajectory space (i.e. object space
density). That is, the trajectory space is divided into
sectors of various sizes such that each sector contains
no more than some specified number of spatial
components. The authors demonstrate that with such a
dynamic sectoring methodology a theorical reduction in
the total number of pair-wise comparisons required
during each time advancement can be achieved.
Additionally, the theoretical computational complexity
associated with identifying spatial conflicts will be
better than O(N?) for a non-uniform distribution of N
spatial objects.

1 INTRODUCTION

Current discrete-event simulation methodologies do not
adequately represent the spatial relationships present in
many physical systems. Current methodologies are
very robust for studying the temporal aspects of a
system such as hourly throughput, average delay,
average queue length, and maximum queue length.
However, both spatial and temporal issues characterize
many of the questions surrounding today's complex
systems. Spatial components of these complex systems
are characterized by the independent continuous
movement of entities through time and space with the
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exception of discrete asynchronous instances of pair-
wise interactions (Lubachevsky 1991).

Current methodologies for modeling  systems
containing continuous entity movement result in a
trade-off between spatial precision, temporal precision,
and computational efficiency. Spatial and temporal
precision can be achieved at the expense of
computational efficiency. Conversely, temporal
precision and computational efficiency can be achieved
at the expense of spatial precision.

Some researchers have used methodologies which
incorporate sectoring in an attempt to increase
computational efficiency.  Sectoring involves sub-
diving the trajectory space into sectors of equal size.
Each spatial component is compared against other
spatial components within the same sector and adjacent
sectors. This strategy does reduce the total number of
pair-wise comparisons required assuming that the
spatial components are uniformly distributed
throughout the trajectory space. Indeed, this has been
the assumption in most previous studies (Goldberg
1984; Beckman et al. 1988; Cleary 1990; Lubachevsky
1991). However, in most complex systems of interest a
clustering of spatial components occurs resulting in a
non-uniform distribution of components. Examples
include battlefield simulations where a clustering of
components occurs at the point of conflict, air traffic
control simulations where clustering occurs around
major air fields, and maritime simulations where ships
cluster around ports.

This paper addresses the issue of computional
complexity for those classes of problems which require
both arbitary spatial and temporal precision and which
must deal the with the complexities of a multitude of
asynchronous pair-wise interactions occuring among a
dynamic non-uniform distribution of numerous spatial
components. Preliminary studies suggest an approach
which could reduce the computional complexity to close
to O(N). This approach dynamically sectors the
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trajectory space based on the number of spatial objects
occupying a portion of the trajectory space (i.e. object
space density). This paper discusses this general
approach the presents the results of the studies.

2 BACKGROUND

The specific objective of the authors’ research has been
to design and develop an efficient discrete-event
simulation methodology for modeling real systems
which involve the movement and interaction of spatial
objects. Simulating the billiards or coliliding puck
model represents a prototypical problem for this class of
complex systems. A billiards simulation requires
comparisons between all objects which have the
potential to collide with one another to determine if a
collision is going to occur. The main computational
expense associated with a billards simulation is
scheduling of future collisions.

Conceptually, these systems can be easily modeled
by having each individual component plan it’s next
event by querying every other component in the
trajectory space to determine the next event of interest.
This simple approach is referred to as the naive
approach to simulating spatial interactions among N
spatial objects. In the simulation of billiards, for
example, the naive approach advances the global state
of the billiards from collision to collision. At the point
in time #; of each collision the states of all N balls are

examined and updated. This approach suffers from
three separate problems. First, each collision is
repeatedly scheduled an order of N times until the
collision actually occurs. Second, at the point of a
collision #; most balls are not participating in collisions,

but are still checked. Lastly, N - 1 comparisons must be
made by each ball to determine it’s next collision
resulting in a computational complexity of O(N?)
(Lubachevsky 1991). A high level flow chart is
presented in Figure 1, which illustrates the simulation
process associated with the naive approach.

We can estimate the computational cost of the
process by stepping through the flow chart. At each
step the estimated number of operations required is
provided in bold type. Additionally, we assume that
every ball is involved in a collision with another ball.
Working, from the inner most loop we can obtain a
rough estimate of the computational complexity
associated with the approach. The inner most loop
contains a total of seven operations assuming a
collision. The next loop contains two operations.
Therefore, we can estimate the cost associated with this
approach tobe 7 X N X 2 X N =(14 X N’ or O(N?).

3 FIXED SECTORING

To improve the performance of the raive approach
current methodologies divide the trajectory space into
sectors of equal dimension which are no smaller than
the simulated components (Rogers 1993; Lubachevsky
1991; Hontales 1989; Cleary 1990; Beckman 1988;
Goldberg 1984). Depending on the sectoring method
employed components are either compared with other
components in the same sector or to both components
in the same sector and to components in directly
adjacent sectors. Adjacent sectors are checked to
account for balls which overlap sector boundaries. If
adjacent sectors are not checked then any ball which
overlaps more than one sector must be maintained on
the list of balls occupying each of the sectors it
overlaps. Assuming that components are distributed in
a random uniform fashion, the theoretical
computational complexity is reduced to approximately
O(n?) where n is equal to N divided by the number of
sectors K (i.e. n = N/K). Where N is the total number
of balls. Figure 2 presents a high level flow chart of the
process associated with a simulation utilizing sectoring,

As with the previous example, we can estimate the
computational cost of the process by stepping through
the flow chart. At each step the estimated number of
operations required is provided in bold type. Again we
assume the worst case (i.e. every ball collides with
another ball) and working from the inner most loop we
can obtain a rough estimate of the computational
complexity associated with this approach. The two
inner most loops contain a total of seven operations
assuming every ball is involved in a collision. The next
two loops contain two operations. Therefore, we can
estimate the cost associated with this approach to be 7
XnX9x2Xn X K=(126 X n’ X K) or O(n’)
since K is a constant.

The major limitation of sectoring is the assumption
that components are distributed uniformly throughout
the trajectory space. In most systems of interest some
type of dynamic clustering of components occurs
resulting in a non-uniform distribution. For example, a
simulation model of the air traffic control system of the
United States would have greater densities of airplanes
in the vicinity of major airports like Chicago O'Hare,
Atlanta and Dallas-Fort Worth. In the worst case the
clustering of components causes thecomputational
complexity to approach the O(N’) complexity of the
naive approach.
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WHILE
Current_Time < End_Time
NO IF
temp1_event.ime = INFINITY 1T i conflicts with i
YES

CALL TO CONFLICT RESOLVER
temp 1_event.time = TIME OF CONFLICT
temp 1_event.vector = VELOCITY VECTOR
temp 1_eventproject = i
temp1_eventhit=j

4

L]

DETERMINE MINIMUM TIME TO NEXT CONFLICT WITH j
min(temp 1_event.time, temp2_event.time)
temp2_event points to record with minimum time 2

DETERMINE GLOBAL MINIMUM TIME TO NEXT CONFLICT
min{temp2_event.ime, next_event.time)

next_event points to record with minimum time 2
[]
* BOLD INDICATES THE NUMBER UPDATE SIMULATION TIME
OF ESTIMATED OPERATIONS current_time = next_event.time

Figure 1: Flow Chart Naive Approach

4 DYNAMIC SECTORING

The benefits of sectoring can be extended to a non-
uniform distribution of spatial objects if we are able to
dynamically sub-divide the trajectory space based on
the number of spatial objects occupying a portion of the
trajectory space. Figure 3 illustrates the benefits a.
dynamic sectoring method. If spatial objects are
uniformly distributed throughout the trajectory space
the sectoring approach performs well. Although, when
spatial objects tend to cluster sectoring provides little
benefit. However, if the sector where the clustering
occurs is further sub-divided then the benefits of
sectoring can be extended to a non-uniform distribution
of spatial objects. A high level flow chart is presented
in Figure 4 which illustrates the processes associated
with the proposed dynamic sectoring approach

As with the previous example, we can estimate the
computational cost of the process by stepping through a
flow chart. Again we assume the worst case (i.e. every
ball collides with another ball) and working from the
inner most loop we can obtain a rough estimate of the
computational complexity associated with the
approach. Like the fixed sectoring method the two

inner most loops contain a total of seven operations and
the next two loops contain two operations each. At this
point dynamic sectoring and fixed sectoring are
equivalent with an estimated cost associated of 7 X n
X 9X2xnX K=(126 X ¥ X K) or O(r®) since K
is a constant. However, the dynamic sectoring, method
requires that sectors are sub-divided until no more than
some pre-specified number of balls # occupies any one
sector. This requires that the trajectory space is sub-
divide ¢ times. Where the value of ¢ is directly
proportional to the total number of balls N and the
maximum number of balls ¢ allowed per sector.
Therefore, we can estimate the cost associated with this
approachtobe (T X n X 9 X 2X nX K)+¢) =
(126 X i* X K)+c)or (126 X # X K) +¢), sincen
=¢, for each step of the clock.

5 A COMPARATIVE EXAMPLE

To illustrate the advantages of each method they will be
compared using an example problem. Note that the
flow charts presented do not include all the operations
that would need to occur if the approach were actually
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TO DETERMINE IF CONFLICT
TH BALLIEXIS
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temp1_event.time = INFINITY

YES CALL TO CONFLICT RESOLVER
femp1_svent.lime = TIME OF CONFLICT
temp1_svent.veclor s VELOCITY VECTOR
[ temp1_event.project = i

femp1_evenl.hil = |

temp1_eventtime = TIME OF CONFLICT L
lemp1_evenlvector = VELOCITY VECTOR|
femp1_eventproject = i
temp1_event.hit =boundry

DETERMINE MINIMUM TIME TO NEXT CONFLICT WITH j
min(lemp1_evenliime, lamp2_event.lime)
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DETERMINE GLOBAL MINIMUM TIME TO NEXT CONFLICT
min({temp2_evenl.lime, nexi_eveni.time)
nexi_event points fo record with minimum time 2

UPDATE SIMULATION TIME
currenl_time = next_event.time

Figure 2: Flow Chart For Sectoring Approach

implemented in computer code. The comparisons are
simply rough estimates of the operations required for
each approach. The estimated number of operations is
based on a worst case assumption. In other words, a
collision occurs every time a ball moves. This
assumption facilitates some consistency for the sake of
comparing the different approaches. Given below is
theestimated number of operations determined from the

flow chart for each approach:
® Naive approach: O X N)
e Fixed sectoring; (126 X n* X K)

¢ Dynamic sectoring: (126 X # X K) +c)

where:
N = Total number of balls.
n = Number of balls in each sector.

t = Maximum number of balls allowed in each
sector.

K = Total number of sectors.
c Total number of sector sub-divisions.

An. example problem will be used for the purpose
of making comparisons. Initially we will assume that
the balls are uniformly distributed such that there is an

equal number of balls in each sector. Assume that we
have 256 balls on a billiards table divided into 64
sectors (i.e. N=256,n=4,t= 4, K=064,c=21).

® Naive approach:
(9 X N =(9 X 256%) =589,842

® Fixed sectoring;
(126 X ¥ XK)=(126 X 4* X 64) = 129,024

¢ Dynamic sectoring;
(126 X t*X K)+¢) = (126 X 4 X 64) +
21) = 129,045

As this example illustrates both fixed sectoring and
dynamic sectoring provide better efficiency when
compared to the naive approach. The two sectoring
approaches provide approximately equivalent efficiency
when balls are distributed uniformly and an equal
number of sectors are used. Now assume that we have
the same number of balls, but the balls are clustered
into a small area the size of a single sector.

® Naive approach:
9 X N*)=(9 X 256%) = 589,842
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Figure 3: Examples Of Sectoring Approaches

WHILE

t= max number Curent_Time <
of balls allowed ) K
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WHILE NUMBER OF BALLS IN
EATER THAN T

¢ = number of .
sub-divisions

required

— CHECK 9
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T n=1t
CHECK EACH BALL ) IN -
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NO . exisT

IF NO
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———___bound

YES CALL TO CONFLICT RESOLVER
temp1_event.time = INFINIT femp1_evenl.time = TIME OF CONFLICT
I temp1_event veclor = VELOCITY VECTOR
T temp1_sveni.project = i
femp1_eventhit = | 4
temp1_svent.time = TIME OF CONFLIC Y
temp1_eventvector = VELOCITY VECTOR

DETERMINE MINIMUM TIME TO NEXT CONFLICT WITH

temp1_event.project = |

min(temp1_event.time, temp2_svent.time)
temp1_event.hit =boundry
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next_event points to record with minimum time 2

\
UPDATE SIMULATION TIME
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Figure 4: Flow Chart Of Dynamic Sectoring Approach
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® Fixed sectoring;
(O X N) +K) = (9 X 256") + 64) =
589,888

e Dynamic sectoring;
(126 X £ X K)+¢) = ((126 X 47 X 64) +
51)= 129,075

In this example the naive and fixed sectoring
approaches both perform poorly. ~ The dynamic
sectoring approach performance is almost equivalent to
the situation involving a uniform distribution of spatial
objects.  The results from the example problem
demonstrate the potential of the proposed dynamic
sectoring approach.

6 SUMMARY

The analysis presented suggests that an efficient
discrete-event simulation methodology for modeling
systems characterized by the independent continuous
movement of entities through time and space can be
developed based on dynamic sectoring. Clearly, a major
concern is the overhead necessary to maintain a
dynamic sectoring scheme. Efforts are continuing by
the authors on implementation strategies for dynamic
sectoring which keep overhead to acceptable levels. In
particular, strategies based on object-oriented modeling
and tree based data structures in lew of linked-lists are
under current study and development. Early results are
promising and efforts are continuing.
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