Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AN OVERVIEW OF HIERARCHICAL CONTROL FLOW GRAPH MODELS

Douglas G. Fritz
Robert G. Sargent

Simulation Research Group
Syracuse University
439 Link Hall
Syracuse, New York 13244, U.S.A.

ABSTRACT

Hierarchical Control Flow Graph Models define a
modeling paradigm for discrete event simulation mod-
eling based upon hierarchical extensions to Control
Flow Graph Models. Conceptually, models consist
of a set of independent, encapsulated, concurrently
operating model components where each component
has its own thread of control and the components
interact with each other solely via message passing.
Two primary objectives for Hierarchical Control Flow
Graph Models are: (1) to facilitate model develop-
ment by making it easier to develop, maintain, and re-
use models and model elements and (2) to support the
flexible and efficient execution of models. Hierarchical
Control Flow Graph Models use two complementary
types of hierarchical model specification structures,
one to specify components and interconnections and
the other to specify component behaviors.

1 INTRODUCTION

Hierarchical Control Flow Graph (HCFG) Models are
a hierarchical modeling paradigm for discrete event
simulation that are based on and designed to be a
hierarchical extension of Control Flow Graph Models.

1.1 Foundation

Cota and Sargent (1990a) developed the Control Flow
Graph (CFG) Model representation based on the
modified process interaction world view (Cota and
Sargent 1992). The primary objective of CFG Mod-
els was making information useful for parallel sim-
ulation explicit in the model representation. Con-
ceptually, a CFG model is a set of independent, en-
capsulated, concurrently operating model components
where each component has its own thread of control
and the components interact with each other solely
via message passing.

In the CFG Model representation, the behavior of
each model component (or process) is specified by a

1347

Control Flow Graph. The interactions between com-
ponents are accomplished via message passing over
a set of directed channels which interconnect model
components and specify the static routing of all in-
tercomponent message traffic. Each channel gen-
erally carries only one type of message which im-
plies that there may be multiple channels between
two components, each of which carries a different
type of message. Messages leave a component via
an output port and enter a component via an in-
put port. Each channel connects exactly one out-
put port to one input port and each port is con-
nected to exactly one channel. Messages queue on
input ports until the Control Flow Graph describ-
ing the behavior of the receiving component decides
to receive them; i.e., components in CFG Models
are “active” receivers (Cota and Sargent 1992). The
timestamp used on an intercomponent message is the
time at which the message is sent. (This is in con-
trast to the method generally used in parallel and dis-
tributed simulation in which the timestamps specify
the time at which the messages are to be received.)
The specification of channels is accomplished via an
Interconnection Graph. An Interconnection Graph
1s a directed graph where the nodes represent the
model components and the directed edges represent
the channels along which intercomponent messages
flow.

Cota and Sargent (1990b) developed a set of al-
gorithms for the execution of CFG Models that allow
CFG Models to be executed on either sequential com-
puters or parallel/distributed computers without any
additional modeler input. The availability and quality
of “lookahead” information is a key element in paral-
lel/distributed simulation (Fujimoto 1990). The par-
allel/distributed execution algorithms for CFG’s use
information that is “explicit” in the model’s repres-
entation in order to generate “automatic lookahead”
information, thus eliminating the need for a modeler
to manually add “lookahead” information as is the
common practice.

1348 Fritz and Sargent

1.2 Evolution

While the CFG Model representation language can
be used for modeling, it was not designed for that
purpose. The Control Flow Graph representation is
straightforward to use in the modeling of simple sys-
tems but can become complex when modeling more
complex systems. HCFG Models were developed as
a hierarchical modeling (specification) language that
allows CFG Models to be used as a model represent-
ation language, thus preserving the ability to use the
existing CFG Model execution algorithms for model
execution. HCFG Models are a true superset of CFG
Models in that any valid CFG Model is also a valid
HCFG Model.

HCFG Models are used for model development.
The HCFG Models can then be transformed into equi-
valent CFG Models (Cota, Fritz, and Sargent 1994)
and executed using any of the CFG algorithms. The
relationships between HCFG Models, CFG Models,
and the execution algorithms are shown in Figure 1.

Herarchical H|erarf:h1cal
Modeling
C 1 1

ontrol Flow Graph Model

CControl Flow Graph Model) Representation

Language

Pt
(Synchronous xﬂ.synchronous) (Conservative

Figure 1: Modeling Language, Representation Lan-
guage, and Algorithms

Simulation
Execution
Algorithrms

Optimistic Combined)

There are two primary objectives for HCFG Mod-
els. The first objective is to facilitate model develop-
ment by making it easier to develop, maintain, and
reuse models and model elements. This objective is
facilitated by supporting the reuse of encapsulated
model elements and the use of hierarchical structures
as an aid in managing model complexity. The second
objective is to support the flexible and efficient ex-
ecution of models. This objective is addressed by
providing an algorithmic mapping from HCFG Mod-
els into equivalent CFG Models (Fritz and Sargent
1993), thus enabling execution using CFG execution
algorithms.

HCFG Models use two independent and comple-
mentary types of hierarchical model specifications.
The first type of specification, called a Hierarchical
Interconnection Graph (HIG), is used to specify the
set of encapsulated components which comprise the
model and how those components are interconnected.
The second type of specification, called a Hierarchical

Control Flow Graph (HCFG), is used to specify the
behaviors of the individual model components. Each
of the two types of model specifications have a graph-
ical representation.

1.3 Organization

The remainder of this paper is organized as follows.
Section 2 discusses the specification of the components
which comprise a model and how those components
are interconnected. Section 3 then discusses how be-
haviors of individual atomic components are specified
using the paradigm. A brief overview of simulation
execution is given in Section 4, and the use of “exper-
imental frames” is discussed in Section 5. Finally we
summarize this paper in Section 6.

2 COMPONENTS AND CHANNELS

In an HCFG Model, the model components and their
interconnections (i.e., the channels) are specified via
a HIG. A HIG is a hierarchical extension of the
CFG Model Interconnection Graph which allows the
modeler to specify model components hierarchically
by supporting the concept of “coupling” together ex-
isting model components to form new model compon-
ents. A HIG specifies the components which comprise
the model and how those components are interconnec-
ted. The interconnection specification is a message
routing specification that uses a set of channels to
define a static message routing pattern for all inter-
component messages transmitted over the course of a
simulation. Each model has exactly one HIG.

2.1 Components

The basic building block in the HIG is the model com-
ponent. Model components are encapsulated entities
which have an external view and an internal view.
From the external view, all model components have
the following attributes: a name (instance name), a
type (type name), a set of input ports, and a set of
output ports. (Internal views are covered below.) The
distinction between “instance” and “type” is signific-
ant. If multiple model components are “instances” of
the same type of component, then those components
all share the same type definition.

The encapsulation boundary formed by a compon-
ent means that the internals of a component are hid-
den from the outside view. The converse also holds.
The exception to this “hidden” rule is the compon-
ent’s set of ports. This is because ports cross the
encapsulation boundary and are thus visible on both
sides (internal and external views). Ports have the
same identifier (name) on both sides of a component
encapsulation boundary.

Hierarchical Control Flow Graph Models 1349

The HCFG Model paradigm specifies model ele-
ments and relationships but does not dictate how
these elements and relationships should be repres-
ented. In this paper we use graphical representa-
tions when we feel they more clearly convey informa-
tion than a textual representation would. Some con-
ventions we follow for the graphical representation
of model components are: components are represen-
ted via boxes, channels are represented by line seg-
ments and their directions by arrows, port identifi-
ers (names) are given near the ports, component type
names start with an uppercase letter and are enclosed
in parentheses “()”, and instance names start with a
lower case letter and are not enclosed in parentheses.

An external view of a simple example of a com-
ponent is shown in Figure 2. This model component
named “theBlueServer” is of component type “Ex-
pServer”. It has three input ports: “new—jobs”,
“suspend—operation”, and “restart-suspended—job”,
and one output port: “completed—jobs”.

suspend-operation restart-suspended-job

(ExpServer)
theBlueServer completed-jobs

Figure 2: Example: A Simple Component

new-jobs

HCFG Models use two different classes of model
components: atomic and coupled. Atomic Compon-
ents (AC’s) correspond to the components used in
CFG Models (i.e., each component is an independent,
encapsulated, concurrently operating entity whose be-
havior is specified via a corresponding component be-
havior specification). Behavior specifications for AC’s
is discussed in Section 3. Coupled components are
discussed in the following subsection.

2.2 Coupled Components

Coupled components are encapsulated model com-
ponents formed by coupling together other compon-
ents (atomic and/or coupled) to form new compon-
ents. Coupled components do not have behavior spe-
cifications. The internal view of a coupled compon-
ent is the view from inside the component but out-
side all enclosed subcomponents. The internal view
of a coupled component is specified via a “Coupled
Component Specification (CCS)”. A CCS specifies (1)
a set of subcomponents which are coupled together
to form a new coupled component type and (2) how
those subcomponents are interconnected. Note that
a CCS defines a component type and all instances of
that type of component in a model share the single
type definition.

Figure 3(a) shows how three components, “al”,
“a2”, and “b” can be coupled together to form a new
coupled component type “C”. A “coupling” defines a
port to port mapping which determines the routing of
all intercomponent message traffic. From the internal
view of a component, we refer to ports which connect
components within that component to the “outside
world” as “external ports”. Thus component type
“C” in Figure 3(a) has an external input port “pro-
cess” and an external output port “done”. Note that
the port “process” is connected to port “new-jobs”
of component “b”. An external view of compon-
ent type “C” is shown in Figure 3(b). Instances of
this new component type “C” are encapsulated model
components which can be used anywhere in a model
that a component is required. A component’s port
names are identical from both the external and in-
ternal views of the component. Figure 3 also shows
two instances of the same type of component “(A)”.
The port identifiers (names) of the two instances of
“(A)” are identical.

Tt Tt T T oo p_roges; ________ \
©)

! |

! 1

! new-jobs |

! - ol 02 - [

1{(A) in (B) in (A},
@ 1lal out il b i2 out a2),

! finished-jobs |

! done |

l\ ______________________ Vil

Figure 3: Coupling of Components

2.3 Hierarchical Structures

Coupled components support the development of hier-
archical models using “top down” recursive decom-
position of components into smaller and simpler com-
ponents, “bottom up” composition of existing com-
ponents to form new components, or a combination of
these two methods. Using a “top down” modeling ap-
proach for HCFG Models one would first define a com-
ponent type and later specify the internal view (defin-
ition) for the component type. HCFG Models can
be constructed by recursively partitioning compon-
ents into a set of coupled subcomponents until each of
the remaining (non-partitioned) components have be-
haviors that can be easily specified using HCFG’s. All
non-partitioned components are AC’s and thus have
behavior specifications. If a particular model compon-
ent has a “natural parallelism” in its behavior, then
that component 1s a candidate for partitioning since
each AC has its own thread of control.

1350 Fritz and Sargent

We represent the hierarchical relationship of the set
of components which comprise an HCFG Model us-
ing a structure called a “HIG tree”. A HIG tree
1s a rooted tree structure in which the nodes of the
tree represent the model components. A HIG tree
shows the hierarchical relationship of the components
in a model, but none of the interconnections. A HIG
tree can be automatically gencrated from a HIG, but
the conversc is not true as the interconnection (coup-
ling) information is not present in the HIG tree. Each
HCFG Model has one coupled component type which
encloses (and defines) the entire model. We com-
monly refer to this component as the “root” or “top
level” component as this component represents the
root node of the HIG tree. This top level compon-
ent 1s the only component in a model which has no
external ports. All internal nodes of the HIG tree rep-
resent coupled components and the leaf nodes of the
HIG tree represent AC’s.

We also have a “HIG type tree” which is a similar
structure to the HIG tree. In a HIG type tree, the
nodes of the rooted tree represent component “types”
rather than components. A HIG type tree can be
automatically generated from a HIG tree, but the con-
verse 1s not true as the component name information
is not present in the HIG type tree. We next use a
simple example to illustrate the concepts of the HIG
and HIG type trees.

Suppose that we have an HCFG Model whose top
level component “M” is as shown in Figure 4. Assume
that component types “A” and “C” are as shown in
Figure 3 and also that component types “A” and “B”
are AC’s. The HIG for this model is completely spe-
cified by two CCS’s (Coupled Component Specifica-
tions), one for the top level component type “M”, and
one for the coupled component type “C”. No CCS
is required for component types “A” and “B” as they
are AC’s and thus have behavior specifications instead

of CCS’s.

(A) in done
process c

Figure 4: A Top Level CCS

The HIG tree for this model would be as shown in
Figure 5(a) (component type names are shown in par-
entheses). The HIG type tree for this model is shown
in Figure 5(b). Since all names in the HIG type tree
are type names, there is no need to enclose the names
in parentheses as is done in the HIG tree. The three
vertical bars in Figure 5(b) indicate replication (i.e.,
more than one component of type “A” is contained

within a component of type “C”). The “(2)” next to
the three vertical bars indicates that there are two
components of type “A” are contained in a compon-
ent of type “C” as subcomponents.

M) M
(A) (C) A C
a c l
1 (2)
(A) (B) (A) A B
al b a2

(a) (b)
Figure 5: HIG Tree and HIG Type Tree

An HCFG Model consists of a set of model compon-
ents arranged in a hierarchical (rooted tree) structure.
The top level component of the HIG tree encloses and
defines the model itself, the internal nodes of the HIG
tree are coupled components which specify a coupling
of lower level components (via a CCS), and the leaf
nodes of the HIG tree are AC’s which have behavior
specifications. In the following section we discuss how
the behaviors of the individual AC’s are specified in
an HCFG Model.

3 BEHAVIOR SPECIFICATION

The behavior of each type of AC in an HCFG Model is
specified using an HCFG. An HCFG is a hierarchical
extension of CFG’s which allows the modeler to use
hierarchy in the specification of the behavior of an AC
type by supporting the recursive decomposition of the
component’s behavioral state space.

3.1 Control Flow Graphs

In a CFG Model the behavior of an AC is specified us-
ing a state based specification called a CFG. A CFG
is required for each distinct type of AC in a model. A
CFG consists of an augmented directed graph, where
the nodes are control states (A control state is a form-
alization of the “process reactivation point” (Cota and
Sargent 1990a; Zeigler 1976)) and the edges show the
possible control state transitions. (Edges may origin-
ate and terminate on the same node.) Each AC is
encapsulated and has a set of variables (including a
(local) simulation clock) that are local to that AC. As-
soclated with each edge are three attributes: a condi-
tion, a priority, and an event. The condition specifies
when an edge can become a candidate for traversal,
the priority 1s used to break ties when more then one
edge is a candidate for traversal at the same simu-
lation time, and the event specifies a state transition

Hierarchical Control Flow Graph Models 1351

for the AC which is executed whenever that edge is
traversed during simulation execution.

3.1.1 Edge Conditions

The condition attribute on CFG edges can be classi-
fied into one of three types: “time delay”, “non-empty
input port”, and “boolean expression”. Edges with a
time delay condition, called “TimeEdges”, have an as-
sociated time delay function. A TimeEdge's condition
becomes true after a simulation time delay specified
by its associated time delay function. This time delay
function may return any non-negative value (includ-
ing zero, which indicates that the condition 1s true
immediately). Edges with a non-empty input port
condition, called “PortEdges”, are assoclated with an
input port of the AC. A PortEdge is true if there ex-
ists an unreceived message waiting on the associated
input port and false otherwise. Edges with a boolean
expression condition type, called “BoolEdges”, have
an associated boolean expression. BoolEdges are
true if the boolean expression (which may reference
only local variables of the AC) evaluates to true,
and false otherwise. We also define a subtype of
BoolEdge, called a “TrueEdge”, to be a BoolEdge
whose condition is defined to always evaluate to true.

We use the graphical notation shown in Figure 6 to
distinguish the different types of edges and their asso-
ciated condition and event attributes. A TrueEdge is
represented as a BoolEdge with a capital “I” near the
edge type symbol. (Functions are indicated by adding
a “()” suffix to the function name.) Port identifiers are
not, functions and thus do not have this suffix.

time-delay-function()
| event()

TimeEdge t >
port-identifier

PortEdge o-event) -
boolean-predicate()
event() -

BoolEdge) >

Figure 6: Edge Notation

3.1.2 Events

The event attribute associated with each edge spe-
cifies the action that is taken whenever that edge is
traversed during the course of simulation execution.
The action taken may include changing the values of
the AC’s local variables, sending messages to output
ports of the AC, or receiving a message from an as-
sociated input port. Any event may send messages
to one or more output ports, however only events
that are associated with PortEdges may receive mes-
sages from input ports. An event associated with a

PortEdge receives only one message during each ex-
ecution (traversal of the PortEdge), and the message
received is from the input port which is associated
with that PortEdge. If no action is to be taken dur-
ing the traversal of a specific edge, we say that the
event associated with that edge is the “null event”
(commonly represented as “e-null()” or “epyuu”).

3.1.3 Operational Semantics

Each AC is an independent encapsulated entity with
its own thread of control. Each AC has what is re-
ferred to as a “Point of Control” (POC). The POC
for an AC always resides at a control state. The con-
trol state at which the POC currently resides is called
the “current” control state. The conceptual operation
of an AC is as follows. The simulation execution al-
gorithm examines all edges leaving the current control
state and selects the edge whose condition attribute
will first (at the earliest point from the current sim-
ulation time) assume the value true. If this selection
process returns more than one edge, then the edge
with the highest priority is selected for traversal. To
execute its next simulation event, the AC advances
its local simulation clock, if necessary, to the time at
which the selected edge’s condition attribute becomes
true. The AC's POC then traverses the selected edge
to the control state which the selected edge terminates
on, executing the associated event routine during the
edge traversal. The control state that the POC ar-
rives on during the edge traversal becomes the new
current control state and the process of selecting an
outbound edge begins again. This operation is re-
peated for each AC until the simulation terminates.
(Note that an edge traversal over an edge with the
null event may advance the AC’s local clock. This
is because the clock advancement occurs prior to and
independent of the event routine associated with the
edge.)

3.1.4 Control Flow Graph Example

To demonstrate how a CFG is used to model the be-
havior of an AC, we show how to model the beha-
vior of a simple queuing server. This server handles
two classes of jobs using a “priority preempt/resume”
job selection discipline. Each job is either a “high
priority” job, or a “low priority” job. Jobs within
each class are processed on a First Come First Serve
(FCFS) basis. The server always works on a high
priority job if one is available and high priority jobs
are always run to completion once they start service.
If the server is busy with a low priority job when a
high priority job arrives, the low priority job is pree-
mpted (work on it is suspended) and the server then

1352 Fritz and Sargent

begins working on the high priority job. The server
processes high priority jobs until there are no more
high priority jobs to work on. Work on a suspen-
ded low priority job is then resumed where it left off.
The external view of the AC type is shown in Fig-

ure 7.
hi-in (2ClassServer) hi-out
lo-in lo-out

Figure 7: “2ClassServer” Type AC External View

Since the AC we are modeling in this example is a
server that handles two classes of jobs, we assign this
AC the type name: “2ClassServer”. A “2ClassServer”
AC has two input ports “hi-in” and “lo-in”, and two
output ports “hi-out” and “lo-out”. In an AC of
type “2ClassServer”, each “job” arrival or departure
1s represented by a message. Thus a job arrival or
departure is synonymous with (and represented via)
a message arrival or departure respectively in our
“2ClassServer”. The priority of a job arriving at the
server 1s determined by the port on which it arrives.
Thus high priority jobs arrive on input port “hi-in”
and low priority jobs arrive on input port “lo-in”. As
Jobs finish service, they are sent out (as messages);
high priority jobs on “hi-out” and low priority jobs
on “lo-out”.

We will model the behavior of the “2ClassServer”
AC using a CFG with four control states. We name
these four control states: “I”, “BL”, “BH”, and “P”
which stand for “Idle”, “Busy-Low”, “Busy-High”,
and “Preempt”, respectively, as shown in Figure 8.
When the POC is at control state “I” the server is
idle. When the control state 1s at “BL” the server is
working on a low priority job (no high priority jobs
are available). When the POC is at “BH” or “P” the
server 1s working on a high priority job. If the POC
1s at “P” there is also a “suspended” low priority job
which will be “resumed” when there are no more high
priority jobs. Three PortEdges and three TimeEdges
show the possible control state transitions. An over-
view of the behavior of this CFG 1s given next.

The POC will remain at control state “I” until a job
is available. If a high priority job is available (there
is an unreceived message on input port “hi-in”) the
POC will traverse the edge to “BH”, executing the
event “start-hi()” during the traversal. If a low pri-
ority job is available (there is an unreceived message
on input port “lo-in”) the POC will traverse the edge
to “BL”, executing the event “start-lo()” during the
traversal. (A PortEdge event routine receives a single
message from the associated input port in addition to
any other action it may take.) If both types of jobs

t-hi()

hi-d
“Idle” -doneQ
hi-in ‘‘Busy-High
start-hi()
lo-in
start-lo()

t-lo()

low-done() -hi()

preempt-done()

“‘Busy-Low”’ “‘Preempt’’

-in
start-preempt()

Figure 8: “2ClassServer” Control Flow Graph

are available, the POC will move to “BH” because
the edge to “BH” has an edge priority of “1” which is
higher than the edge to “BL” which has a priority of
“2”. (Lower numbers indicate higher priorities. Also
note that there is no need to explicitly indicate a pri-
ority on edges where there is only one edge leaving a
control state.)

When the POC enters either “BH” or “P”, pro-
cessing of a high priority job begins. Processing then
continues for the duration specified by the time delay
function “t-hi()” associated with the edges leaving
“BH” and “P”. After the specified time delay the
POC moves again. The event routines associated with
the edges leaving “BH” and “P” send a message to
the “hi-out” output port indicating the completion of
a high priority job. Even though the edges leaving
“BH” and “P” share the same time delay function,
they must have different event routines because the
edge leaving “P” must also restore the state of the
“preempted” low priority job that was saved previ-
ously by the “start-preempt()” event. The defini-
tion of the “t-hi()” time delay function is straight-
forward as high priority jobs always run to comple-
tion once started. The “t-lo()” time delay function on
the TimeEdge from “BL” to “I" is more complex be-
cause it i1s based on the “remaining” processing time
required by a low priority job which may have been
preempted one or more times before completing ser-
vice.

3.2 Hierarchical Control Flow Graphs

Behavior specification using CFG’s is straightforward
for the modeling of simple systems but can become
complex when modeling the behavior of larger and
more complex AC’s. As the complexity of an AC’s
behavior increases it becomes more difficult to model
that behavior using CFG’s due to two primary factors.
The first 1s the possible explosion of the number of

