Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

AN INTRODUCTION TO SLX™

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900
Annandale, VA 22003-2603, U.S.A.

ABSTRACT

SLX is Wolverine Software’s “next generation”
simulation language. SLX builds on the strengths of
Wolverine’s GPSS/H (Henriksen & Crain, 1996). It
provides powerful simulation capabilities in a modern,
C-like language framework. SLX provides a multiplicity
of layers, ranging from the SLX kernel, at the bottom,
through traditional simulation languages, e.g., GPSS/H,
in the middle, to application-specific language dialects
and extensions at the top. This paper provides an
overview of SLX for readers who are already familiar
with simulation. An earlier paper (Henriksen 1995)
presented key concepts of the architecture of SLX. As of
this writing, SLX has been heavily used by a number of
alpha testers. Insights gained from our interactions
with the software testers will be presented.

1 INTRODUCTION

The most important characteristic of SLX is its layered
architecture. The success of SLX’s layered approach
depends on several factors:

A. The layers are well-conceived. In developing
SLX, we have had the luxury of drawing on years of
experience with GPSS/H. A great deal of SLX is
based on GPSS/H. In some cases, source code from
GPSS/H has been directly “lifted” for use in SLX. In
other cases, we have modified, simplified, or adapted
GPSS/H algorithms. In a few cases, we have
eliminated pitfalls and shortcomings of GPSS/H.
The end result is an extremely well-designed system.

B. The layers are not too far apart. Many other
languages provide multiple layers, but typically there
are wide gulfs between the layers. For example, a
language might provide flowchart-oriented building
blocks as its primary modeling paradigm, but also
provide for “dropping down” into procedural
languages such as C or FORTRAN. The problem

468

with this approach is that there are only two layers,
and they are too far apart. One must become familiar
with many details of the C or FORTRAN
implementation of the simulation language to be able
to add C or FORTRAN extensions. Even worse,
virtually none of the error checking and other
safeguards provided in the simulation language are
available in C or FORTRAN. The SLX kernel
language is a powerful, C-like language, so users of
SLX almost never find it necessary to drop down into
a lower-level, more powerful language. Furthermore,
the SLX kernel language includes complete checking
to prevent errors such as referencing beyond the end
of an array and using invalid pointer variables. The
layers above the SLX kernel exploit kernel
capabilities in straightforward ways. Transitions
from layer to layer are very smooth.

C. The mechanisms for moving from layer to layer
are very powerful These mechanisms are
abstraction mechanisms. A “higher level” entity
provides a more abstract description than a “lower
level” entity. Lower level implementation details are
hidden at the upper levels. SLX provides both data
and procedural abstraction mechanisms. Like C, SLX
provides the ability to define new data types, and to
build objects which are aggregations of data types.
The procedural abstraction mechanisms of SLX are
extremely powerful. SLX provides a macro language
and a statement definition capability which allows
introduction of new statements into SLX. (The SLX-
hosted implementation of GPSS/H makes heavy use
of the statement definition feature.) The definitions
of macros and statements can contain extensive logic,
including conditional expansion, looping, optional
arguments, lists of arguments, etc. In fact, such
definitions are actually compiled by SLX, allowing
use of virtually all kernel-level statements. Macros
and statement definitions offer far more than simple
text substitution.

An Introduction to SLX 469

In the sections which follow, selected features of the
SLX kernel are presented. Following the presentation
of the SLX kernel, SLX’s extensibility mechanisms are
illustrated. Finally, brief presentations of how SLX has
been used and how SLX is taught are presented.

2 SLX KERNEL FEATURES

The number of primitives required to support simulation
is surprisingly small. Implementing some of these
primitives in a general form, however, can be very
difficult. Features such as SLX’s generalized wait until
are extremely difficult to implement. Not surprisingly,
this feature has rarely appeared in other simulation
software. Paradoxically, some of the features which are
the most difficult to implement are the most easily
understood. In the remainder of Section 2, we will
present some representative features, to illustrate the
functionality, ease-of-of-use, and ease-of-learning of
SLX.

2.1 Objects and Pointers to Objects

The very mention of the word “object” inspires a wide
range of expectations and emotions, due to the
widespread influence of object-oriented programming
(OOP). SLX has been influenced by OOP and
incorporates some OOP ideas, but SLX is not a truly
object-oriented language. Such a statement is a rarity
in this day. Many products claiming to be object-
oriented are far from it. In fact, although we do not
claim that SLX is object-oriented, it is probably more so
than some products for which OOP architecture is
claimed.

In SLX, objects are used in two ways. Passive objects
are used for modeling entities which have no
“executable” behavior. For example, a parking lot
could be modeled as a passive object. GPSS/H
Facilities, Queues, and Storages are implemented as
passive SLX objects. Active objects have executable
behavior patterns. Customers in a supermarket are a
good example of entities that would probably be
modeled as active objects. SLX active objects are
roughly equivalent to GPSS/H transactions. Some
entities can be modeled either as active objects or
passive objects. For example, a simple server with a
FIFO queue can be modeled as a passive object. Its
behavior depends solely on the requests made for it by
active objects. (This is the way Facilities work in
GPSS/H.) For more complicated servers, an active
object may be more appropriate. Consider a butcher in
a model of a supermarket. In a simple queueing model,
the butcher can be represented as a passive object,
responding to requests for service one customer at a

time. In a more realistic model, the butcher would have
a more complex behavior pattern, cycling through
activities of cutting meat, arranging products in
refrigerators, interacting with the deli department,
taking breaks, etc. Such behavior would require
modeling the butcher as an active object.

SLX objects can have a number of standard
properties. All standard properties are comprised of
explicitly identified sections of executable code. The
initial property is invoked when an object is created.
The final property is invoked when an object is about to
be destroyed. The report property is invoked by the
report statement; it is used for the obvious purpose. The
actions property specifies the behavior pattern for an
active object. It is invoked by the activate statement
(discussed in the next section). A sample object
follows:

object customer

{

integer number of items;

initial
{
number of items =
rv_uniform(streaml, 10, 20);

}

actions

{

;
report

érint (ME, number_of_ items)

“* exiting, items purchased: *\n”;
};}

Objects are created by using the new operator, which
returns a pointer to the newly created object:

pointer (customer) cust;
cust = new customer;

The initial property of the customer is executed
before the pointer to the new customer is assigned to
cust. The initial property can be thought of as an
easier-to-use counterpart to a C++ constructor. All uses
of pointers are validated to ensure that pointers always
point to objects of the proper type (or contain a NULL
value). Use counts are maintained for all objects. If
pointer] and pointer2 are pointer variables, an
assignment statement of the form “pointerl = pointer2”
causes the use count for the object pointed to by pointerl
to be decremented and the use count for the object
pointed to by pointer2 to be incremented. Storage for an

470

object is released if and only if its use count goes to
Zero.

2.2 Active Objects

An active object has an actions property. When the
activate verb is used, a puck is created for the object and
placed on the active puck list; i.e., the puck is placed in
a ready-to-execute state. Pucks are the schedulable
entities in SLX. Scheduled time delays and state-based
delays, e.g., waiting for a server to become available,
are puck-based operations. Thus manipulation of pucks
is the basic mechanism by which a collection of objects
experiences events over time. Pucks embody the means
of achieving simulated parallelism.

Two kinds of parallelism can be described in SLX.
Large-scale parallelism consists of interactions among
active objects. For example, in a model of a freeway toll
booth system, active car, truck, and bus objects would
all interact. Small-scale or /ocal parallelism consists of
parallel activities carried out by the same object. For
example, a customer entering a bank may decide that
(s)he will wait in line for no longer than two minutes.
At the end of that time, if the customer has not been
served, (s)he will renege (exit the system without having
been served.)

At first glance, the distinction between large-scale
and local parallelism might appear to be somewhat
arbitrary. What’s large-scale, and what’s local? In
SLX, a precise distinction is made based on the SLX
verbs which are used. Objects are activated by using the
activate verb. In most cases activate is used in
conjunction with new:

activate new customer;

The above statement creates a new customer object,
creates a puck for it and places the puck in the active
puck list, poised to execute the first statement in the
customer object’s actions property. The puck which
executes the “activate new” statement continues
executing. The new customer will compete with other
pucks (according to their respective priorities) after the
current puck has gone as far as it can in the actions
property at the current instant of simulated time.

Local parallelism is described by using the fork
statement:

fork
(

offspring actions

parent

{

parent actions

)

Henriksen

Execution of the fork statement creates an additional
puck for the currently active object. The newly created
puck is placed in the active puck list, poised to execute
the offspring actions clause of the fork statement. The
parent puck executes the optional parent actions clause.
Unless otherwise specified, both pucks continue
execution with the next statement following the fork
statement. An example of the fork statement is given in
Section 2.4.

2.3 Time Advance

Time advance is provided by the advance statement,
modeled on the ADVANCE block of GPSS/H, e.g.,

advance rv_expo (stream2, 10.0);

The advance statement removes the puck from the
active puck list and places it on the future event list,
scheduled to resume execution after the specified time
delay has taken place.

2.4 Control Variables & Wait Until

In SLX, state-conditioned delays are modeled using
control variables and the wait until statement. The
keyword “control” is used as a prefix on SLX variable
declarations:

control integer count;
control boolean repair completed;

The “control” keyword tells the SLX compiler that at
each point at which the value of the control variable is
changed, a check must be made to see whether any
pucks in the model are currently waiting for the variable
to attain a particular value or range of values. Such
waits are described using the wait until statement:

wait until (count > 10);
wait until (repair_ completed);

Compound conditions are allowed as well:

wait until (count >= 10
or repair completed
and not repairman busy);

SLX also supports indefinite (user-managed) waits.
Three steps are required to implement an indefinite
wait. First, the puck which is going to wait must be
made accessible to other pucks. This is usually done by
placing the puck into a set. Second, the puck executes a
wait statement with no “until” clause. Finally, at a

An Introduction to SLX 171

subsequent point in simulated time, another puck
executes a reactivate statement to reactivate the waiting
puck.

Let us consider an example which illustrates the use
of the fork statement in conjunction with wait unfil.
Assume that customer objects flowing through a model
reach a point where they are willing to wait a maximum
of two minutes for service. If they are not served within
two minutes, they exit the system; i.e., they renege.

object customer
{
control boolean reneged;
actions

{

fork
{
advance 2.0;
reneged = TRUE;
terminate;
}
parent
{
wait until (reneged
or server available);
if (reneged)
terminate;
}
}
)i

// max wait time

In the above example, a Boolean control variable is
used within the customer object for communicating
“renege” status between two pucks which share the
same object. At the point at which the customer begins
waiting for service, it forks, creating a second puck.
The offspring puck executes the logic enclosed in braces
immediately following the fork statement. The original
puck executes only the logic contained within braces
following the “parent” clause. The offspring puck
undergoes a two-minute delay, sets reneged to TRUE,
and terminates itself. The parent puck waits for either
the server to become available or for the two minutes to
elapse. When it comes out of the wait until, it must
distinguish which of these two possibilities has taken
place. If the two minutes have elapsed, reneged will be
TRUE, and the parent puck will terminate itself. If not,
the parent will continue executing.

The sharing of a single data area makes communi-
cation between the two pucks trivial. The “reneged”
variable shared by the two pucks is all that is needed to
accomplish the communication required in this
example. Note that if there are multiple customers
active at a given time, each customer will have its own
data area, so the “reneged” status for one customer
cannot be confused with that of another.

In many simulation languages, operations such as
reneging are difficult to implement. Because of this,
languages sometimes include operations such as
reneging as built-in features. Unfortunately if the
language designer’s concept of reneging does not
exactly match your requirements, you're stuck. In SLX,
carefully designed rock-bottom primitives allow you to
build your own capabilities if none of the ones provided
by others meet your needs.

2.5 Sets

SLX includes the capability for defining and manipu-
lating sets of objects. Sets can be homogeneous
(comprised of objects of a single type) or universal
(comprised of objects of arbitrary types.) Homogeneous
sets can be ranked in ascending or descending order on
one or more attributes of objects of the type comprising
the set. Some examples of set definitions follow:

set (widget) ranked FIFO fifo_ set;
set (widget) ranked LIFO 1lifo set;;
set (*) universal_ set; B
set (job) ranked(ascending due date,
descending priority) job_set;

An iteration construct is provided for looping through
the members of a set:

pointer (widget) w;
for (w = each widget in fifo_set)

{
}

If the subject set is a universal set, for each selects
only objects of the specified type, skipping over any
objects which are of other types. Arbitrarily complex
forms of iteration can be built from lower-level first,
last, successor, and predecessor primitives:

first widget in widget_set;
last widget in widget_set;
successor (w) in widget_ set;
predecessor (w) in widget_ set;

L L ZZ
o

Using these primitives, any form of set iteration can
be achieved.

3 EXTENSIBILITY FEATURES

SLX was designed to be an extensible platform on
which a wide variety of higher level simulation
applications could be built. In this section we will
briefly present an example of how the extensibility
mechanisms can be used to build new features out of old
ones.

472 Henriksen

Suppose we wish to build a simple telephone book.
Furthermore, assume that each entry in the book
contains only a first name, a last name, and a telephone
number. An entry in the phone book can be described
as an SLX object:

object book entry
{

fstring(20) first_name,
last_name;
int phone number;

}

Suppose that we wish to retrieve entries from the
phone book both by name and by number. We could
construct two SLX sets, one ranked by name and one
ranked by number:

set (book_entry)ranked(ascending
last_name, ascending first_name)
phone_book;

set (book_entry) ranked (ascending
phone_number)
reverse_phone_book;

The name-sorted phone book could be printed as
follows:

pointer (book_entry) name;
for (name = each book entry in
phone_book)
print (name -> last name,
name -> first_name,
name -> phone_ number)

Wk % & & & * Kk ok ok ok . *******\nll.
1 - .

Of course, the printing of phone books is best left to
the telephone company. For the rest of us, the most
common use of the phone book is to look up numbers.
For the police, a relatively common use is to look up the
name associated with a number. The SLX kernel
contains no “look up” primitive, however, one can be
constructed easily from existing language features. The
following approach can be used to look up a phone
number, given first and last names. First, copy the first
and last names into a dummy book entry object. We
call this object query book entry, Next, place the
query book entry object into phone book. Since
phone_book is ranked by ascending last and first name,
and entries with identical keys are inserted into a set in
FIFO order, we know that query book entry will be
placed into phone_book immediately following the entry
we wish to look up. Thus, the desired entry will be the
predecessor of query_book_entry in phone book. If the
name we are looking up is not in the phone book, either

the predecessor of query_book_entry will be NULL, or it
will contain the wrong names. These conditions are
easily detected. Finally, the query_book_entry can be
removed from phone_book.

While each of the steps outlined above is
straightforward, we'd like to have a less cumbersome
way of issuing queries. SLX provides a statement
definition facility which allows us to construct a
“retrieve” statement. The definition of our retrieve
statement is shown in Figure 1. The first line of the
definition is a prototype which specifies the components
of the retrieve statement. Names preceded by a pound
sign (“#”) represent components that are supplied by the
user for each use of the statement. Braces (“{}”) are
used to enclose a group of specifications. The notation
“,...” indicates that the immediately preceding
component can be repeated as many times as desired,
with repetitions separated by commas. The “@” in
front of the “from™ keyword tells SLX to ignore the
usual meaning of “from™ and treat it as a keyword of the
retrieve statement. (“from” is a reserved word in SLX))

The definition section specifies the mapping of the
retrieve statement into lower-level SLX statements.
Within the definition section, the expand statement is
used to specify the lower-level SLX code that is to carry
out the retrieval operation. The expand statement
specifies one or more lines of output which is injected
into the SLX compiler’s input stream. A list of
expressions can be supplied to be edited into the
generated lines of output. Within an output line, groups
of adjacent “#” symbols are replaced by edited values.

With one very important exception, this approach is
similar to the use of macros in many languages. In
most languages, the statements which are available to
specify the internal logic of a macro are either very
limited and use a syntax different from the host
language, or they comprise a comparatively weak subset
of the host language. In SLX, the “macro language” is
SLX itself. Only a handful of statements are excluded
from use within an SLX statement definition. For
example, simulation constructs such as wait until or
advance have no meaning during compilation of a
program. Apart from these obvious restrictions, most of
the rest of the SLX language can be used. For example,
it is even possible to read a file as part of the process of
expanding a statement!

The example in Figure 1 makes use of a local integer
variable, i, which is used to iterate through the list of
comma-delimited ‘“#key = #value” items. The iteration
is terminated when an empty value of #key[i] is
encountered. This is an SLX convention. If a list of N
items is provided, #key[l...N] will have non-empty
values, and #key[i] will be empty fori > N.

An Introduction to SLX

A sample invocation of the retrieve statement and its
expansion is shown in Figure 2. This example
illustrates the power of SLX’s statement definition
facility. The retrieve statements are easy to read. If you
didn’t know that the retrieve statement was built using
the statement definition facility, you would probably

473

easy to reshape the language by adding new statements
which are specific to the kinds of problems you are
working with. Whether you need a capability which is
not present in basic SLX, or whether you just want a
more expressive way of specifying complex logic in a
more compact form, the statement definition facility can

think that it was a built-in SLX statement. This be of great use.
example illustrates the extensibility of SLX. It’s very
statement retrieve #ptr = #otype ({ #key = #value },...) @from #set ;
definition
{
int i;
expand "{\n";
for (i=1; #key([i] !'= ""; i++)
expand (#otype, #key[i], #valuel[i])
"query_#.# = #;\n";
expand (#otype, #set) "place &query_# into #:;\n";
expand (#ptr, #otype, #set) "# = predecessor (&query #) in #;\n";
expand (#otype, #set) "remove &query # from #;\n";
expand (#ptr, #ptr, #key[l], #value(l])
"if (# != NULL)\n if (# -> # != #4";
for (i=2; #key(i] !'= ""; i++)
expand (#ptr, #key[i], #value[i))
"or # -> # != (#)";
expand (#ptr) ")\n # = NULL;\n";
expand "}I\n"

)

Figure 1: The Definition of a “Retrieve” Statement

retrieve e book_entry(last_name=lname, first_name=fname) from phone_ book

{
query_book entry.last name lname;
query book entry.first name fname;
place &guery book entry into phone_book;
e = predecessor (&query book entry) in phone_book;
remove &query book entry from phone book;
if (e != NULL)
if (e -> last_name != lname or e -> first name
NULL;

(fname))

(
e

Figure 2: A Sample Expansion of the “Retrieve” Statement

474 Henriksen

4 EXPERIENCE WITH SLX TESTERS

As of this writing SLX has been intensively used by a
select group of testers around the world. Interacting
with the testers has resulted in a number of
improvements to SLX and has yielded some interesting
insights into how SLX is (and will be) used. The
projects tackled by SLX testers have all been fairly
intense efforts. Included among these have been a half-
dozen masters degree thesis projects and one very large
scale, real-world transportation model.

Two modest surprises have come out of the testing.
First, the extent to which users have made direct use of
SLX kernel-level features has exceeded our
expectations. Perhaps biased by our years of experience
with GPSS/H, we had expected that most users would
prefer to use higher-level features, only occasionally
resorting to kernel-level features. Virtually all the
testers have made heavy use of low-level scheduling
primitives such as wait until and fork. A second modest
surprise has been the extent to which the testers have
exploited SLX’s statement-definition capabilities. We
had envisioned the statement definition capability as
being of interest primarily to builders of higher-level
simulation packages, but nearly everyone who has
touched SLX has made use of its statement definition
facility.

Taken together, these two surprises demonstrate that
we have achieved our goal of extensibility. SLX is
easily adapted to different purposes by different users.
With the ability to incorporate new statements into the
language, the extended language used by the developer
of a package for manufacturing applications is quite
different from the extended language used by someone
tackling transportation problems. Yet the two are built
on a common foundation, and the underlying software is
hardened and tempered by exposure to widely differing
usage patterns.

S TEACHING SLX

The architecture of SLX has potentially profound
implications for teaching simulation. The usual
approach to teaching simulation is to “dive in” at an
intermediate level by providing an easily understood
collection of building blocks and exploring some well-
motivated examples. Students of simulation who tackle
real-world applications sooner or later reach a point at
which they have to go back and build a foundation
under their knowledge; i.e., they have to learn how
things really work. Depending on exactly when the
foundation-building process takes place, students may
have already developed usage patterns which ignore
some of a language’s capabilities and misuse others.

For example, self-taught users of GPSS/H will almost
always favor an “active-object, passive-server” world-
view, even though the language is quite capable of
expressing an ‘“active-server, passive object” world-
view. For users of very high-level simulation packages,
especially graphically based model-builders, the
foundation-building may never take place. Whether
this is good or bad is a matter of religion. Advocates of
the very high-level approach think this is good, while
their more conservative counterparts are appalled by the
danger of doing too much with too little knowledge.

In SLX, the number of kernel constructs which
directly support simulation is very small. Depending on
what one counts as a simulation feature, the number
ranges from roughly 8 to 12. Our experience with
GPSS/H has proven that this is a small enough number
of building blocks for beginners to readily absorb. For
example, we have seen many times that so-called “9-
block GPSS/H” is easily mastered and quite powerful.

However, even with 9-block GPSS/H, students
quickly reach a point at which foundation-building is
necessary. With SLX, a bottom-up approach is feasible.
For example, consider modeling a barbershop, a
traditional introductory one-line, single-server queuing
model. In a beginner’s model, the barbershop runs from
9:00-5:00, at which time it summarily shuts down,
ignoring the customer (if any) who is in the barber chair
at that time and ignoring customers (if any) in the
queue. In a second model, more realistic shutdown
conditions can be implemented. At 5:00 the door to the
shop is closed, and the barber does not leave until the
current customer and all customers in the queue at 5:00
have been served. In SLX, this condition is easily
expressed as a compound “wait until” condition, e.g,,
“wait until (queue empty and server idle).” Thus,
SLX’s wait until feature is well-motivated and easily
understood at a very early stage of model building, In
SLX, wait until is the foundation of all forms of state-
based events. Thus mastery of wait until yields
enormous benefits.

SLX kernel-level simulation primitives are exposed,
i.e, they can be used directly. In most simulation
software, primitives are bound into impenetrable
higher-level features. For example, in GPSS/H there
are at least five building blocks which internally utilize
the equivalent of wait until. Some of these blocks have
many external variations. Thus, students of GPSS/H
must master the external variations and learn how the
underlying wait until mechanism works. In SLX,
it’s easier to learn the general mechanism first. Wait
until is both an SLX primitive and a fundamental
modeling concept. Thus, by teaching/learning wait
until, we can kill two birds with one stone.

An Introduction to SLX 475

As of this writing, an introductory SLX textbook is
under development. A preliminary (at least) edition of
the book will be available by the time of the 1996
Winter Simulation Conference. The book will use the
approach outlined above for simultaneously exposing
fundamental simulation concepts and their implemen-
tation in SLX. Given the enormous popularity of
graphically-based, fill-in-the-blanks modeling tools, our
approach to teaching SLX entails a degree of risk.
We’re going back to teaching the basics at a time when
much of the rest of world is moving in the opposite
direction. Our approach is motivated by a year’s
experience with our SLX testers and over twenty years’
experience in helping users learn to use our simulation
software. Our experience is biased by years of exposure
to people who still believe it’s important to know what
they’re doing,

6 CONCLUSIONS

SLX is a well-conceived, layered simulation system.
Users of the upper layers can ignore lower layers.
However, if their requirements are not met at a given
level, they can move down one or more levels, without
exerting extraordinary effort and without losing
protection against potentially disastrous errors.
Developers, who are used to working down among the
lower layers, have at their disposal powerful
extensibility mechanisms for building higher layers for
use by themselves or others. The efficacy of the
approaches offered by SLX has been demonstrated
through intensive use. The benefits for teaching
simulation derived from being able to simultaneously
expose language primitives and fundamental modeling
concepts remain to be demonstrated as of this writing.
However, we are excited by SLX’s great potential.

REFERENCES

Henriksen, JJO. 1995. An Introduction to SLX. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos. 502-509. Institute
of Electrical and Electronics Engineers, Piscataway,
New Jersey.

Henriksen, J.O., and R.C. Crain. 1996. GPSS/H
reference manual, fourth edition. Annandale, VA:
Wolverine Software Corporation.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of
Wolverine Software Corporation. He is a frequent
contributor to the literature on simulation and has
presented many papers at the Winter Simulation
Conference. Mr. Henriksen served as the Business
Chairman of the 1981 Winter Simulation Conference
and as the General Chairman of the 1986 Winter
Simulation Conference. He has also served on the
Board of Directors of the conference as the
ACMY/SIGSIM representative.

