
Proceeding8 of the 1996 Winter Simulation Conference
ed. J. M. Cbarnes, D. J. Morrice, D. T. Brunner, and J. J. S"nrain

LOGICAL PROCESS SIZE IN PARALLEL SIMULATIONS

Fang Hao
Karen Wilson

Richard Fujimoto
Ellen Zegura

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280

ABSTRACT

Most existing synchronization protocols require
that the simulation application be partitioned and
mapped to logical processes to make it suitable for
parallel execution. Assuming the simulation mod­
els some number of physical components, an impor­
tant design question is how many components should
be mapped to each logical process? This is a non­
trivial question because logical process '~size" affects
the efficiency of the synchronization protocol, load
balance, and approach for implementing shared state
variables, as well as the efficiency of the event process­
ing loop within the parallel simulator. This question
is studied in the context of a Time Warp-based par­
allel simulator. Results of two experimental studies
are described that compare the performance of par­
allel simulators using different logical process sizes.
One study uses synthetic workloads; the other uses an
Asynchronous Transfer Mode (ATM) network. These
results show that the choice of logical process size can
have a significant effect on performance, and the opti­
mal size depends on model size, the number of avail­
able processors, and detailed semantics of the model
itself.

1 INTRODUCTION

It is well known that long execution times severely
limit the effectiveness of discrete event simulation
techniques in modeling moderate and large sized sys­
tems. One approach to reducing execution time is to
use parallel discrete event simulation (PDES) tech­
niques to execute the simulation model (Fujimoto
1990b, and Nicol and Fujimoto, 1994). This is a par­
ticularly attractive approach when simulating large
networks because such networks inherently contain
large amounts of spatial concurrency. Here, we are
primarily concerned with optimistic synchronization
algorithms such as Time Warp (Jefferson 1985) that

645

utilize a rollback and recovery procedure" to synchro­
nize the conlputation.

Traditional PDES approaches such as Time Warp
define the simulation as a collection of logical pro­
cesses (LPs) that execute concurrently, and commu­
nicate by exchanging timestan1ped events, or mes­
sages; these two terms are used synonymously here.
For example, in an ATM network simulation, logical
processes must be defined to model components in
the network, e.g., traffic sources, switches, and multi­
plexers. Thus an important design question is: How
should the sinlulation model be partitioned into log­
ical processes? Is it better to define many small log­
ical processes, e.g., a single switch might be mod­
eled as several logical processes, or should one define
"large" logical processes that include several compo­
nents (e.g., several switches)? As elaborated upon
later, this is a non- trivial question because of con­
siderations such as load balancing, shared state, and
interactions between the synchronization algorithm
and the way the network has been partitioned. We
refer to this question as the logical process size prob­
lem.

Here, we are especially concerned with small­
granularity simulations containing only a modest
amount of computation within each event, e.g.,
a few hundred machine instructions. Simulations
of telecommunication networks are often small­
granularity simulations because typical events might
do little more than update queue length state vari­
ables and schedule new events. It is particularly im­
portant that parallel simulator overheads be mini­
mized for these simulations because only a modest
an10unt of overhead computation for each event could
significantly degrade performance.

After considering a synthetic workload, we focus
on simulation of ATM networks. Modern high­
bandwidth networks must provide acceptable qual­
ity of service to an increasingly diverse set of "appli­
cations and traffic sources ranging from low speed

646 Hao et a1.

data transfers to high quality high-definition tele­
vision (HDT\;) distribution. A.T~\I is one Il1ethod
for accol1lmodating diverse applications on an inte­
grated network. This diversity among sources has a
direct iIllpact on the design of high-speed net\vorks
and their expected perforIllance. T'radi tional traf­
fic assumptions are not applicable at the A.T~I cell
(i.e., 53 byte fixed size packet) level (Das et al. 1994).
Thus, the analytical approach to perfOrl1lanCe mod­
eling is generally numerically intensive and often ap­
proxiIllate. Further, the apprOXiI1late analytical l1lod­
els require validation that is typically perforIlled by
sil1lulations. In any case, simulation is an indispens­
able tool \vhen it COl1leS to testing the perforIllance
of a systeIll over a wide variety of traffic loads and
scenarios. However, simulations of high-speed net­
works require excessively long execution times, since
network designers and researchers require simulations
of large net\vorks, and often have to collect statistics
over l1linutes and hours of real til1le operation.

In the next section \ve revie\\' related \vork in ac­
celerating the execution of simulations of telecomIllU­
nication networks. Issues and tradeoffs concerning
the partitioning of network simulations are then dis­
cussed and evaluated experimentally. A case study is
described cOlllparing the perforIllance of tleo parallel
sil1lulations of the saIlle AT~I net\vork Ill0del, one us­
ing "large" LPs, and the second using "sInalI" ones.
The perfOrl1lanCe of these two siI11ulations of t he saIne
network model on a C0l1l1110n parallel silllulation plat­
form are then compared experiIllent ally.

2 RELATED WORK

A considerable aillount of \\'ork in the circuit de­
sign cOIl1munity has been concerned \vith defining
partitioning algorith'ms that divide circuits into sub­
circuits for silllulation on parallel COillputers, e.g.,
see Davoren (1989), and Nandy and Loucks (1992).
There, the partitioning probleIll is typically posed as
decoillposing a large circuit into N sub-circuits, where
each sub-circuit is silnulated on a different processor.
These algori thms usually aSSUIlle it is best to oper­
ate with only one logical process per processor, and
do not directly address the question of ho\v logical
process size affects parallel siIllulation performance.

A goal of the 'Nork described here is deveiopillent of
a flexible, widely-applicable, parallel siI11ulation tool
for Illodeling teleC0I11IllUnication networks. This goal
has been pursued by other researchers as well. For
example, Earnshaw and Hind (1992) report up to an
order of lllagnitude speedup in silllulating B-ISDN
networks. Gaujal et al. (1993) report an order of mag­
nitude speedup in silllulating call routing using appli-

cation specific parallel siI1lulation techniques, and re­
port sinlulator performance exceeding 3,000,000 sim­
ulated calls per Dlinute. Turner and Xu (1992) report
success in speeding up telephone switching net\vork
silllulations using a variation of Time Warp. More re­
cently, work at the lJniversity of Calgary is developing
a parallel siIl1ulation toolkit for 1110deling telecoIl1mu­
nication networks (Unger and Xiao 1994). Not all re­
port success, ho\vever. Phillips and Cuthbert (1991)
report that their Transputer-based conservative SiDl­
ulations ran lllore slowly than a sequential simulator.
Tallieu and \;erboven (1991) also report disappoint­
ing perforlllance in siIllulating an Ethernet. The cen­
tral contribution of our results is in addressing the LP
size question in the context of parallel silllulators such
as those described above. .A.lthough the experiIllen­
tal results presented in this paper apply exclusively
to TiIlle Warp siIllulations, SOlne of the qualitative
tradeoffs discussed in this work also apply to conser­
vative siIllulation aigorithills.

3 LOGICAL PROCESS SIZE

The physical systeIll is assumed to be COillposed of
a collection of com,ponents, where each cOIllponent
is inforIllally defined as the 1110st prilllitive eleIllent
\vhose behavior is explicitly represented in the sinlU­
lation Il10del via state variables and events. Perhaps
a more pragIl1atic definition of a component is the
sIllallest portion of the sinlulation Ill0del that could
be represented by a logical process, given the level
of detail required to nleet the goals of the siIllulation
study. The cOIllponents of the cell-level ATIVI sinl­
ulation lllodel described later include traffic sources,
traffic sinks, and elenlents of each switch (e.g., output
ports) .

The central question to be addressed here concerns
the number of cOillponents that should be included
in a single logical process to I1laxin1ize performance.
The advantages of defining "large" logical processes
that contain Illany cOillponents include:

• efficient shared state. State variables accessed by
siIllulators for different components within the
sam,e logical process nlay be directly accessed by
those components using local meIl10ry references.

• event com,bining. If it is known at Ill0del devel­
opment tiIlle that an event will occur at several
different components at the sallle instant in tinle,
and these components are all modeled within a
single LP, then the simulator need only schedule
a single event at the LP.

• process-oriented simulations. Process-oriented
simulators usually define each LP to contain a

Logical Process Size in Parallel SiIn ulations G47

single thread of execution that can "pause~~ , e.g.,
to wait for another event. This is in contrast to
event-oriented simulators where each event re­
sults in a procedure to be executed, and sim­
ulated time only advances between procedure
calls. Implementation of process-oriented sim­
ulations typically requires a runtime stack to be
maintained for each LP, and light-weight threads
to switch execution among the LPs. Simulations
using a small number of large LPs will typically
require much less menl0ry than sinlulations us­
ing a large number of snlall LPs. Due to reduced
menl0ry managenlent overhead (e .g., caches op­
erate more efficiently for small programs), large
LP simulations may yield better performance as
well as lo\ver nlenl0ry consulllption.

The efficiency of the event scheduling lllechanislll
may be affected by LP size, depending on the imple­
nlentation of the parallel sinlulation executive. Event
scheduling involves (1) locating the pending event list
for the LP receiving the message, and (2) enqueueing
the message into this data structure. Interprocessor
communication will also be required if the sending
and receiving LPs are mapped to different processors,
however, this affects large and small LP sinlulators
equally, assullling the same mapping of cOlllponents
to processors is used. If (1) above is faster when an
LP schedules an event for itself cOInpared to schedul­
ing an event for a different LP, using large LPs offer
sonle benefit because there \vill typically be nl0re of
these "self-scheduled" events. However, it is not a
priori clear that self-scheduled events are necessarily
faster than scheduling events bet\veen different LPs
on the same processor. We conjecture that for ll10st
parallel simulation executives, large LPs offer little or
no advantage over small LP simulators with respect
to event scheduling because locating a destination LP
should not be a time consullling operation in a well
designed simulation executive. For example, in Das
et al. (1994) locating the destination LP is a constant
tinle operation (essentially, indexing into an array),
independent of the destination or the number of LPs.
Further, because a large LP including several compo­
nents \vill typically have more pending events than a
small LP, one would expect longer enqueue tinles, (2)
above, giving the edge to snlall LP simulators.

In addition to scheduling events, each processor
must repeatedly select the next event to be processed,
typically by selecting the event with the snlallest
timestamp among those LPs mapped to the proces­
sor. We refer to the computation to perform this task
as the event selection overhead. Event selection typi­
cally involves (1) selecting an LP to execute next, and
(2) selecting the smallest timestamped event within

that LP. Use of large LPs \vill typically reduce (1)
because there are fewer LPs to manage, but at the
cost of increasing (2), because there will usually be
more pending events within each LP. If data struc­
tures with similar access times (e.g., O(logN) inser­
tion and deletion time priority queues) are used for
maintaining the list of runnable LPs and the list of
pending events within each LP, LP size may not sig­
nificantly affect event selection overhead. Similarly,
if both lists are cOlllbined into a single priority queue
data structure as described in Das et al. (1994), LP
size will not affect the event selection overhead at all.

'~Snlall" logical processes do offer sonle significant
advantages over large LPs:

• greater potential concurrency. Concurrency is
lilllited by the nUlllber of LPs, so smaller LP Silll­
ulators 11lay offer 1110re potential concurrency.

• 'm,ore flexible load distribution. Better workload
balance 11lay be obtained because the granular­
ity of COlllputation that may be nl0ved froIn one
processor to another is finer.

• potentially lower state saving overhead. Opti­
nlistic protocols require snapshots of the LP~s

st ate to be 11lade to enable rollback. Large LPs
\vill ty'pically contain Inore state than snlaller
ones, necessitating 1110re state copying.

• less rolled back co'mputation or artificial block­
ing. If 1.\VO different, independent conlponents
are combined into a single larger LP in a Time
\t\larp silllulation, a rollback in one conlponent
nlay unnecessarily cause rollback events in the
second conlponent. Sinlilarly, in a conservative
sinlulation, blocking one component may unnec­
essarily delay processing events in another COlll­
ponent within the same LP.

Fronl the above discussion, we see that it is not
a priori clear whether large or slllall LPs will yield
the best perfornlance, or how nluch difference this
question makes \vi th respect to overall perfornlance.
It is clear that the ans\ver to this question depends
on the simulation nl0del and illlplenlentation details
of the underlying simulation executive.

4 SYNTHETIC WORKLOAD

To quantitatively evaluate how different factors affect
perfornlance, a synthetic workload program called
PHOLD was used (Fujimoto 1990a). The simulation
model consists of a collection of entities, that send
messages to each other. Each entity sends nlessage to

648 HHQ et ai.

100 r----r---~----..--___r__--..____---r-----,

40000

20000

102451232 64 128 255
Number ot Logle3J Processes

Number ot Proces.sol'S =1 _
Number ot Proc6$S01'S ..2 -+-­
Number ot Pnx:6$S01'S::4 ·8··
Number ot Processors as -Joe-

BO

20

Number or Processors ,,1 ..­
Number or Processors:2 ~­

Number 01 Processors =4 I]

Number 01 Processors =8 ..

.---..----_.~----_._._------

oBL------L...--3..L-2--....L64---I..12B--...J.256-----'S1-2---:1024

Number 01 Logical Processes

120000

100000

Gi
a:

] 80000

"1::l

~
~

Figure 1: Events conlnlitted per second-PHOLD Figure 2: Rollbacks-PHOLD

another entity after processing each event. The des­
tination is selected from a unifornl distribution. The
time stamp increnlent is selected fronl an exponential
distribution. The entities are partitioned into logical
processes so that each LP contains the sanle nunlber
of entities. The workload of the PHOLD sinlulator
is specified as the n1essage population, i.e., the nun1­
ber of unprocessed events that exist in a sequential
execution of the sin1ulator at any instant.

To enlulate the effect of shared state, state update
nlessages are added to the PHOLD n10del. The enti­
ties are clustered into a nUlnber of groups. A.ll entities
in the san1e group share state variables. The shared
state is updated at sin1ulated tin1es follo\ving a Pois­
son distribution. In each group, one ~~n1aster" entity
is chosen that is responsible for sending update n1es­
sages to the other entities in the group. If all entities
in a group are in the sanle logical process, only one
update nlessage needs to be sent to ilnplenlent each
update, i.e., the I1laster entity only sends one update
nlessage to itself. However, if the entities in a group
span several logical processes, n1ultiple update mes­
sages Inust be sent, i.e., the nlaster entity must not
only send an update Inessage to itself, but also send
one update I1lessage to each LP containing entities
within the group.

4.1 Experinlents without State Updates

The first set of experiI11ents \vere conducted to eval­
uate the effect of roll backs on the performance of
PHOLD without state updates, under different LP
sizes. The perfOrI1lanCe of PHOLD, as measured by
the nUI1lber of events comI1litted per second with dif­
ferent nUI11bers of logical processes (from 8 to 1024)
and processors (1, 2, 4, or 8), are shown in Figure 1,
where the n1essage population is 64.

\\'e observe that the I11essage event rate increases

with the number of logical processes, i.e., the fine­
grained simulator produces better performance than
the coarse-grained simulator. The principal reason is
the coarse-grained simulator is prone to having more
unnecessary rollbacks than the fine-grained simulator.
We also observe that this effect is more pronounced
when the number of processors is increased. This is
because increasing the number of processors results in
more optimistic execution, accentuating the rollback
behavior.

Figure 2 shows the fraction of processed events that
are rolled back. This graph confirms that the nUlll­
ber of rollbacks increases significantly as the LP size
increases (fewer LPs).

However, when the workload is heavy (e.g., I11eS­
sage population is 1024), we observe that the number
of logical processes does not have a dominant effect
on the message event rate. This is because the heavy
work load reduces the rate of advance of each LP and
thus reduces the nUI11ber of rollbacks.

4.2 Experiments with State Updates

A second set of experiments were conducted to eval­
uate the effect 'of state updates on perfornlance. The
performance was measured by determining the nUI11­
ber of "effectiven cOI1lmitted message events per sec­
ond, where the nun1ber of "effective" events is defined
as the nUI11ber of total committed events minus the
nUlnber of update events. The latter term represents
an additional overhead incurred by sin1ulations using
snlall LPs. Figure 3 shows performance with different
numbers of logical processes(from 8 to 1024), proces­
sors(4 or 8), and mean state update intervals (equal
to 1 or 10 times the timestamp increment, or no up­
date messages). The message population is 64.

We observe that: (1) In general, the effective event
rate increases, and then declines, as the number of

Logical Process Size in Parallel Simulations 649

taken from an existing IP network called Sesquinet.
The network consists of 94 switches and 80 hosts.
Each host is represented by a source and a sink. (3)
Traffic is generated using a uniform geometric bursty
traffic model. The destination of each burst of cells
is selected from a uniform distribution. All sources
behave in a similar fashion. (4) The routing is short­
est path, computed using unit weights on all links.
(5) The simulators only model forwarding of ATM
cells from one component to another. A static set
of circuits is assumed, i.e., no new circuits are con­
structed during the simulation, and circuits are never
torn down. (6) To emulate the effect of shared state
(e.g., due to creating or destroying circuits during the
simulation that cause routing table entries to change),
both simulations use a common state update model.
Specifically, state updates are generated using a Pois­
son process, and affect the state of a single switch.
(7) Both simulators use identical mappings of logi­
cal processes to processors in the sense that the set
of components modeled by LPs mapped to a single
processor is the same for both simulators. The fine­
grained simulation used here does not take advantage
of the fact that the LPs used to model a single switch
could be distributed over multiple processors.

We now describe the details particular to each of
the two implementations used to study process gran­
ularity.

5.1 Fine-Grained Implementation

The fine-grained implementation uses a large number
of small LPs, ass~ciating each host and each output
queue in a switch with a separate LP. The fine-grained
implementation of the Sesquinet has 436 LPs.

The fine-grained simulation uses copy state saving
exclusively. Each state update event (pertaining to a
single switch) results in the generation of additional
state update events that are sent to other LPs model­
ing different output ports of the switch; the events are
required to ensure the different copies remain consis­
tent. This strategy for updating state is sometimes
called "push" processing, in contrast to "pull" pro­
cessing where LPs do not maintain local copies, but
rather, state is explicitly requested by each LP via
"query events" when needed (Wieland and Jefferson
1989). Push processing is more efficient when state
updates occur less frequently than state queries.

5.2 Coarse-Grained Implementation

The coarse-grained implementation creates a small
number of large LPs, grouping multiple sources to­
gether into source LPs, multiple sinks together into
sink LPs and multiple switches together into switch

1024512

..-_._ _._._.- _._ --- .. _- .. -

32 64 128 256
Number of Logical Processes

16

UpdateMean=1. NPE=4­
UpdateMean..10. ,PE=4 -t--.

No Update, lIPE=4 .[3 ••

UpdaleMean=1, 'PEeS .-1(­

UpdaleMean=10. #PEeS
No Updale. "PE=8 -•. -

O""'----_~_--"'__....o.....__ ____'___..a.....-_---'-_-----'

8

20000

120000

140000

100000

logical processes is increased. This is because when
the number of LPs is small, the number of update
messages is small, so rollback is a dominant factor
affecting performance; however, when the number of
LPs is large, the number of update messages is large,
so the overhead for update messages becomes domi­
nant. (2) Performance is more sensitive to changes in
the number of LPs when the mean value of the update
interval is smaller, because more update messages are
generated.

Again, when the workload is heavy (e.g., message
population is 1024), performance is less sensitive to
changes in the number of LPs, similar to what was
observed in the previous experiments.

5 CASE STUDY: ATM SIMULATION

Figure 3: Effective events per second-PHOLD

The simulation of large networks of ATM switches
presents an interesting case study for optimal selec­
tion of logical process size. A single ATM switch is
commonly abstracted as a set of output queues, one
per output link. A large network of switches can then
be partitioned into logical processes spanning a vari­
ety of process sizes, including (1) one process per out­
put queue, ,(2) one process per switch, and (3) multi­
ple switches per process. For this case study, we fo­
cus on the first and third approaches; our fine-grained
(small LP) implementation uses one process per out­
put queue while our coarse-grained (large LP) im­
plementation uses multiple switches (and hosts) per
process, where each host represents a single source of
network traffic, and a single sink.

In order to compare the results from these two
partitioning. approaches, we maintain the following
characteristics across the two implementations: (1)
A switch is represented by a set of output queues,
one per switch output link. (2) We use a common
topology for the large network of switches, which is

650

2OOO0.----------,------y------,

Hao et ai.

100 .-------_r---------,-------,

15000

';
a:

~
~
~ ooסס1

~
0

"i
';
:;
E
iii

5000

Large LP. Random ­
Large LP. Balanced ---­
Large LP. Clustered

Small LP, Random-­
SmaH LP, Balanced - - •
SrnaU LP, Clustered - - -

~ -- : :~;..,,, -
-.'

_,'""~:,-3-;::;:>--------- -- --

80

20

Large LP. Random ­
Large LP. Balanced ._-­
Large LP, Clustered

Small LP. Random - -­
Small LP, Balanced - - ­
Small LP, Clustered - - -

oL- -----J -----L -'

1
Number 01 Processors

Figure 4: Silllulated cell transmissions-ATM

LPs. In the coarse-grained illlplenlentation of the
Sesquinet there is one source, one sink, and one switch
LP per processor.

The implenlentation of the source Ill0del results in
an event at each source during each time unit that
deterillines whether the source turns on or off. The
synchronous nature of this model results in Illany
events across the different sources occuring at the
same silllulated tillle. The event handling routine
in the coarse-grained sinlulator uses event cOlllbining
(discussed earlier) and only schedules one event for all
of the sources 1l1odeled by the LP. By contrast, the
fine-grained sinlulator described earlier Illust schedule
separate events for each source LP.

The coarse-grained silllulator uses copy state sav­
ing for variables that are 1l10dified \vith each event
and increIllental state saving for other state variables.
Because increillental state saving is somewhat more
expensive than copy state saving, this situation favors
fine-grained LPs. State updates are handled Ill0re ef­
ficiently in large-grained LPs, since all of the Ill0dified
state is confined to a single LP.

6 PERFORMANCE RESULTS

The two parallel silllulators were executed on a
four processor shared-menl0ry Spare multiprocessor.
Each processor is a 50 IvIHz HyperSparc. The per­
fornlance metric used in this study is the number of
simulated cell transmissions (sending a cell over a sin­
gle COlll1l1Unication link) per second. The Tillle Warp
executive used in this study is described in Das et al.
(1994). The first set of experiments does not consider
state updates. The effect of the frequency of state up­
dates on performance is then studied in a second set
of experinlents.

o~~~~~~~.::....:....:.::...:....::..-------l- ____l

1
Number 01 Processors

Figure 5: Rollbacks-ATM

6.1 Experinlents without State Updates

A sequence of experiments were performed using the
following partitioning algorithms: (1) Random. map­
ping: each switch or host node in the network is ran­
domly Illapped onto a processor. (2) Balanced ran­
do'm, mapping: each node is randomly Inapped onto
a processor, with the constraint that each processor
must be assigned an equal, total number of switch
and host nodes. (3) C'lHstering mapping: the network
is partitioned to balance the workload (as measured
in the nUlllber of hosts and switches nlapped to each
processor) and to reduce interprocessor conl111unica­
tions. The partitioning was performed Inanually.

The performance of the t\VO sinlulators under dif­
ferent partitioning strategies with light traffic load is
shown in Figure 4. The probability that a source is in
the "on" (transillitting) state is 0.06; similar results
were observed when the traffic load is high (e.g., the
'~on" probability is 0.67). Across the experiments,
we observe that (1) The coarse-grained simulator far
outperforms the fine-grained simulator for one or two
processors. (2) The fine-grained sinlulator's perfor­
nlance approaches, and in SOllle cases surpasses the
coarse-grained simulator for three or four processors.
(3) Among the three mapping strategies, clustering
mapping yields the best perfornlance, and randoDl
nlapping the worst performance. Ivloreover, the par­
titioning algorithm does have a significant affect on
perforillance in both simulators. (4) All of the simula­
tors exhibit some degree of perforillance degradation
as the number of processors increases, as elaborated
upon below.

The principal reason the coarse-grained simulator
outperforms the fine-grained simulator when using
a small number of processors is because it can ex­
ploit event combining. This significantly reduces the
amount of computation that must be performed to

Logical Process Size in Parallel Simulations 651

100 1000
Mean Value of Slate Update Interval

Figure 6: Time spent processing update events

6.2 Experiments using State Updates

small LPs, 0.06 active probabi61y ­
large LPs, 0.06 active probabiUIy -­
smail LPs, 0.67 active probabiUIy .•••.
large LPs, 0.67 active probabiUly -

~ .

\, ~

"""""""----~~~~~ ..-

90

80

l 70

i 60
:::>
Cl
c
"is

50j "

i 4{)

CI)

~ 30

0

i 20
~

10

LPs to processors yielded poor performance for both
the large and small grained simulators, especially as
the number of processors was increased.

A second set of experiments were performed to eval­
uate the effect of state updates on the relative perfor­
mance of the two simulators. The same traffic gener­
ation model was used as in the experiments without
state updates. As mentioned earlier, state updates
were generated within each switch with an exponen­
tially distributed time between updates. Experiments
used 25, 100, 500, and 2500 as the mean values of the
state update interval, where five units corresponds to
the amount of time required to transmit one cell over
a link. Each set of experiments were executed on one
to four processors using the clustering approach to
network partitioning.

The time spent performing state updates of the two
simulator on four processors is shown in Figure 6; sim­
ilar data was observed for different numbers ofproces­
sors. The execution time of the small-grained simula­
tion without state updates was 92 and 171 seconds for
the lightly and heavily loaded networks, respectively.
Execution times for the large-grained simulator were
59 and 116 seconds, again for the lightly and heav­
ily loaded networks, respectively. As expected, as
the state of each switch is updated more frequently
(moving to the left in Figure 6), the fine-grained sim­
ulator incurs more state update overhead than the
coarse grained-simulator. This overhead represents
a significant portion of the simulation computation
at high update frequencies. It is perhaps notewor­
thy that the performance of the fine-grained simula­
tor would be degraded even further if LPs modeling
a single switch were distributed across multiple pro­
cessors because interprocessor communication would

generate cells at the source LPs. Because simula­
tor events contain relatively little computation, the
overhead for scheduling and processing events signif­
icantly degrades the performance of the fine-grained
simulator, which must schedule a new event for each
source each clock tick.

A significant performance degradation was ob­
served in the coarse-grained simulator as the number
of processors is increased. This is because use of large
LPs makes the simulator more sensitive to rollbacks,
a phenomenon observed in the experiments using syn­
thetic workloads. Figure 5 shows the fraction of pro­
cessed events that are rolled back. As noted earlier,
rolling back a large LP introduces unnecessary roll­
backs in the computation, which in turn can result
in unnecessary anti-messages and additional rollbacks
in other LPs. We observed that both the small- and
large-grained LPs yielded more rollbacks as the num­
ber of processors increased, as would be expected,
however, the increased number of rollbacks was far
more pronounced in the coarse-grained simulation.
This ultimately led to the fine-grained simulation out­
performing the coarse grained simulation, although
the fine grained simulator using up to four processors
never outperformed the coarse grained simulator us­
ing only two processors. It is possible that the fine
grained simulation could yield the best performance
overall if more processors were available for these ex­
periments.

A second factor affecting performance with four
processors is the presence of operating system dae­
mons running on one processor of the four. The
processor mappings assume identical processors, and
thus allocate processing equally. We observed more
severe performance degradations for the small-LP
simulation than the large-LP simulations when all
four processors were used (The experiments with
fewer processors avoid the one executing the dae­
mons). While in principal one could isolate the ma­
chine to avoid such interference, such a stand-alone
configuration is not what one would typically en­
counter in practice. A more pragmatic approach is
to adjust the processor mapping to compensate for
this effect. Further experiments are are required to
study this question, and to optimize performance of
both simulators for increased numbers of processors.

Clustering mapping yields the best performance
because it reduces the amount of inter-processor com­
munications. This partitioning algorithm also yielded
fewer rollbacks. The balanced random mapping
yielded better performance than the simple random
mapping. Balancing the workload reduces the num­
ber of rollbacks, as one would expect. Overall, sim­
ple mapping strategies such as random distribution of

652 Hao et ai.

then be required with each state update.

7 CONCLUSIONS AND FUTURE WORK

This study addressed the question of partitioning SiIU­
ulations into logical processes, and whether small­
grained or large-grained LPs yielded better perfor­
mance. For the test cases that were examined, the
central conclusions frOOl this study are: (1) The 010st
doolinant effect favoring large-grained logical pro­
cesses in these experiments was their ability to C0I11­
bine events containing the same tiolestaolp into a sin­
gle event. (2) Large grained logical processes suffered
from being relatively sensitive to rollback as the nUOl­
ber of processors increased, especially \vhen the \vork­
load is low. Unnecessary rollbacks due to aggregat­
ing too many coolponents into a single LP can have
significant, detrio1ental effects in Tilue Warp sio1ula­
tions. (3) Partitioning the simulation to avoid state
variables that are shared between LPs results in SOOle­
what higher overheads for state updates, particularly
if the state variables are updated very frequently.

Work is continuing to collect additional data across
a variety of other test cases, e.g., other network
topologies, source traffic models, and traffic loads.
with the goal of developing an efficient, flexible paral­
lel simulation tool for I110deling ATlVI networks. SiOl­
ulations using sI11all sized LPs are able, in principal,
to achieve better load balance because portions of a
switch may be distributed over more than one proces­
sor, an aspect not explored in the results descri bed
here.

ACKNOWLEDGEMENTS

This \vork was supported by NSF Grant Number CDA­
9501637 and NCR-9527163.

REFERENCES

Bae, J., and T. Suda. 1991. Survey of traffic control
schemes and protocols in ATM net\vorks. Proceedings
of the IEEE, 79(2).

Das, S., R. Fujimoto, !(. Panesar, D. Allison, and :lvI. Hy­
binette. 1994. GTvV: A Time Warp system for shared
memory multiprocessors. In 1994 Htinter Simulation
Conference Proceedings, pages 1332-1339.

Davoren, M., 1989. A structural mapping for parallel dig­
ital logic simulation. In Proceedings of the SCS Jvfulti­
conference on Distributed Simulation, volume 21, pages
179-182. SCS Simulation Series.

Earnshaw, R. W., and A. Hind., 1992. A parallel simu­
lator for performance modelling of broadband telecom­
munication networks. In 1992 Winter Simulation Con­
ference Proceedings, pages 1365-1373.

Fujimoto, R. 1990a. Performance of Time Warp under
synthethic \vorkloads. In Distributed Simulation, vol­
ume 22, pages 23-28. SCS Simulation Series.

Fujimoto, R. 1\/1. 1990b. Parallel discrete event simulation.
Communications of the A CM, 33(10):30-53.

Gaujal, B., A. G. Greenberg, and D. M. Nicol. 1993.
A sweep algorithm for massively parallel simulation of
circuit-switched networks. Journal of Parallel and Dis­
tributed Computing, 18(4):484-500.

Jefferson, D. R. 1985. Virtual time. ACM Transactions

on Programming Languages and Systems, 7(3):404-425.
Nandy, B., and W. Loucks. 1992. An algorithm for par­

titioning and mapping conservative parallel simulation
onto multicomputers. In 6 th ~Vorkshop on Parallel and
Distributed Simulation, volume 24, pages 139-146. SCS
Simulation Series.

Nicol, D. M., and R. M. Fujimoto. 1994. Parallel simula­
tion today. Annals of Operations Research, 53:249-286.

Phillips, C. 1., and L. G. Cuthbert. 1991. Concurrent
discrete-event simulation tools. IEEE Journal on Se­
lected .Areas in Communications, 9(3):477-48.5.

Tallieu, F., and F. Verboven. 1991. Using Time Warp
for computer network simulations on transputers. In
Proceedings of the 24th Annual Simulation Symposium,
volume 21, pages 112-117. IEEE Computer Society
Press.

Turner, S., and M. Xu. 1992. Performance evaluation
of the bounded Time Warp algorithm. In 6 th Work­

shop on Parallel and Distributed Simulation, volume 24,
pages 117-128. SCS Simulation Series.

lInger, B., and Z. Xiao. 1994. The fast parallel simula­
tion of telecommunication networks. In Proceedings of
New Directions in Simulation for j}fanufacturing and

Communications. The Operations Research Society of
Japan.

Wieland, F., and D. R. Jefferson. 1989. Case studies
in serial and parallel simulation. In Proceedings of the
1989 International Conference on Parallel Processing,
volume 3, pages 255-258.

AUTHOR BIOGRAPHIES

FANG HAO is a Ph.D. student in the College of Com­
puting at Georgia Tech.

KAREN WILSON received the M.S. degree in Com­
puter Science at Georgia Tech in 199.5. She is currently
employed by Digital Equipment Corporation.

RICHARD FUJIMOTO is a professor in the College
of Computing at Georgia Tech.

ELLEN ZEGURA is an assistant professor in the Col­
lege of Computing at Georgia Tech.

