
Proceedings of the 1996 WinteT Sim,1l.lation Conferenre
ed. J. M. Charnes, D. J. Ivlorrice, D. T. Brunner, and J. J. S\vain

USING ZPL TO DEVELOP A PARALLEL CHAOS ROUTER SIMULATOR

Wilkey Richardson

Department of Electrical and Computer Engineering
University of Arizona

Tucson, AZ 85721, U.S.A.

William H. Sanders

Mary L. Bailey

Computer Science Department
University of Arizona

Tucson, AZ 85721, U.S.A.

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.

ABSTRACT

This paper reports on our experience in writing a parallel
version of a chaos router simulator using the new data
driven parallel language ZPL. The simulator is a large
program that tests the capabilities of ZPL. The (parallel)
ZPL program is compared with the existing serial imple
mentation on two very different architectures: a 16-pro
cessor Intel Paragon and a cluster of eight Alpha work
stations. On the Paragon, the simulator performs best
when simulating medium- to large-sized routers, and on
the Alpha cluster, it performs best when simulating large
routers. Thus a user can choose the parallel platform best
suited to the router size.

1 INTRODUCTION

There are some simulators that are good candidates for
parallel simulation. These simulators are generally too
slow on a sequential machine and are much faster on a
parallel or distributed machine. The first criterion is often
much easier to judge than the second, since the second is
only truly verified after the implementation of a (good)
parallel simulator. A sequential simulator has been imple
mented to simulate a chaos router, a randomizing, non
minimal adaptive router for multicomputers (Bolding and
Snyder 1992, Konstantinidou and Snyder 1994). It exhib
its the first characteristic, slowness, when simulating
large routers. The router simulator has been used exten
sively on a sequential machine, and one version of the
router node has been implemented in VLSI (Boulding et
al. 1994). While the sequential simulator proved suffi
cient for many different router configurations, it proved
to be impractical for very large router sizes. Thus it
becomes a candidate for a parallel simulation, assuming
the parallel version can run much faster than the serial

809

one and, in this case, can simulate larger router configura
tions than are practical using the sequential simulator.

There are several issues to consider when implement
ing a parallel simulation. First is whether the simulation
is event-driven or time-driven. Event-driven strategies are
most appropriate when the activity of the system being
simulated is uneven. This is not true in the chaos router
simulator under heavy loads. Almost all router nodes are
active during each time interval, so a time-driven simula
tion is preferred, eliminating the overhead of event man
agement.

The second issue is the implementation language. Ide
ally, the simulator will be portable, implying the use of
some type of standard parallel language or communica
tion library. There are many parallel languages that could
be selected. We chose to use ZPL, a new data-driven por
table parallel language that is a sublanguage of a more
general family of parallel programming languages A-ZPL
designed by Lin and Snyder (1992, 1993). ZPL is attrac
tive for this parallel simulation for three reasons. First, a
data-driven model is appropriate given the time-driven
simulation model. Second, ZPL is portable, so users can
run the parallel simulation on various platforms. Third,
ZPL is a sublangague of A-ZPL. Many simulators are
event-driven and thus cannot use a data-driven language
but require a more general parallel language such as A
ZPL.

This paper reports on our experience writing a parallel
version of the chaos router simulator using this new por
table data-driven parallel language ZPL. We compare the
resulting parallel simulator with the serial one on two
very different platforms: the Intel Paragon and a network
of Alpha workstations. The Intel Paragon performs best
for small- to medium-sized problems but runs into mem
ory problems for the largest sizes. The Alpha network
performs poorly for small- to medium-sized problems but
performs well for larger-sized problems. In fact, it can

810 Ricbardson, Bailey, Sanders

simulate larger sized routers than can be simulated by the
Paragon or by a single Alpha workstation. Thus we show
that our original goal is met - the parallel simulator can
run faster than the serial one on the Paragon for many
router sizes, and we can simulate larger router nodes
(mainly on the Alpha cluster due to memory limitations
on the Paragon). Moreover, we believe that our experi
ences using ZPL are valuable to other parallel program
mers who wish to use this new language. We believe that
the parallel chaos router simulator is the largest ZPL pro
gram that has been written to date.

2 THE PARALLEL CHAOS ROUTER

The chaos router is a randomizing, nonminimal adaptive
router for multicomputers. It dynamically selects com
munication paths depending on network traffic, thus
bypassing network congestion. Moreover, messages do
not necessarily take a minimal path between source and
destination - they can be derouted, or steered off a mini
mal path, to avoid congestion. The chaos router uses ran
domization to eliminate the need for livelock protection,
thus probabilistically ensuring that each message reaches
its destination. We briefly describe the chaos router algo
rithm, focusing on those parts of the algorithm critical in
the simulation; the router is fully described in Bolding
and Snyder (1992).

The current router specification assumes that the com
munication structure is an n-dimensional torus, with a
processor/router pair at each torus node. We further con
strain the communication structure to be a two-dimen
sional torus, as in the hardware implementation. Each
processor communicates with its corresponding router
node; each router node communicates with both its corre
sponding processor and its four adjacent router nodes. A
block diagram of a router node is shown in Figure 1.

Figure 1: A Chaos Router Node

Messages enter the routing network through the Injec
tion Frame and exit through the Delivery Frame. Both are
actually FIFO buffers that connect the router to its corre
sponding processor. There are also two buffers associated
with each of the four router communication channels: the

Input Frame and Output Frame. When a message enters
the router, either through the Injection Frame or an Input
Frame, its header is read to determine which Output
Frames and/or Delivery Frame can be used to profitably
route the message. These desirable output buffers are
then searched in a cyclical order, with the first free buffer
receiving the message. If no desirable output buffer is
free, then after a specified number of cycles the message
is stored in a central Queue. Messages in the Queue have
priority for accessing outgoing channel(s) when they
become free. If a message is destined for the Queue, but
the Queue is full, a message in the Queue is derouted.
The message to be derouted is picked randomly.

3 THE ZPL IMPLEMENTATION

The parallel simulator uses the fact that there is a uniform
torus of router nodes to create an array or ensemble of
router nodes for the ZP~ language. Ensembles in ZPL are
automatically distributed across processors but are man
aged as a single entity in a ZPL program. Once the router
ensemble was created, most of the ZPL simulation was a
relatively straightforward implementation of the single
router node operation. Communication among the ele
ments of an ensemble are facilitated by ZPL operators,
including operators for "wrapping" data around the
edges. It should be noted that even though the ZPL pro
gram is written in a purely SIMD style, the code is not
executed in lock-step, as in an SIMD architecture. There
are specific places in the code where synchronizations are
performed; otherwise each processor runs its portion of
the code asynchronously (Lin and Snyder 1993).

Our original implementation wa~ quite slow; a 64-node
router ran 16 times slower on a one-processor Paragon
than the serial version! We thus focused initially on opti
mizing the ZPL code. There were four areas where we
optimized: (1) communication, (2) memory usage, (3)
procedure calls, and (4) statistics. The first two were
needed mainly because of our naive translation of the
serial router code into ZPL code. The third was needed
because of the way that ZPL compiles procedure calls.
The fourth was needed because of the way router statis
tics are computed, where global data are required. We
will discuss each of these four areas, focusing on those
aspects that might help other ZPL programmers.

In ZPL, there are two operators that are used to com
municate data within an ensemble, the "wrap" and "@"

(at) operators, both of which take an ensemble as their
operand. In the chaos router, the data for each router node
are encapsulated in a single ensemble, which we initially
used as the operand for these operators. However, these
operators invoke communication, so when we wrapped
an ensemble node, the ZPL compiler packaged the entire
router node (approximately 5KB) into a message and sent

Using ZPL to Develop a Parallel Cbaos Router Simulator 811

it to another processor. This resulted in much larger mes
sages than were necessary. By modifying the code to use
only the portion of the node that was needed, we reduced
the message size to 24 bytes, resulting in a 47% decrease
in execution time for a 64-node router.

We had to pay close attention to memory usage in the
router simulation because ZPL does not support dynami
cally allocated data structures, which the serial router
simulator uses extensively. In some places, it is easy to
avoid the dynamic structures by using ensembles; in
other places, it is more difficult. For example, each node
has a queue of messages that are being injected into the
router by the processor associated with this node. This
queue is typically quite small, but it can grow large when
the router is congested. For the ZPL implementation, we
statically fixed the sizes of these data structures to be the
largest size supported in the serial simulator. In the case
of the injection queue, this resulted in a 4KB queue per
node. As the number of nodes grows, this becomes a sig
nificant amount of memory, which is often in short sup
ply. Thus we more carefully determined the appropriate
size for each data structure, shrinking them whenever
possible. In the case of the injection queue, the amount of
memory was reduced to 200 bytes per node with no loss
of functionality. This resulted in a 17% savings in execu
tion time for a 64-node router.

The third problem area involved procedure calls. There
are two types of procedures in ZPL, parallel and pro
moted procedures. A parallel procedure uses a parallel
construct, references an ensemble, or performs I/O. All
other procedures are promoted procedures. Parallel pro
cedures cannot be called from promoted procedures.
When a promoted procedure is called from a parallel pro
cedure, the promoted procedure is called in parallel, once
for each element in the ensemble found in the parallel
procedure. We originally assumed that the optimal per
formance would be obtained using parallel procedure
calls, since it would allow the ZPL compiler to exploit the
natural data parallelism. In fact, this is not true. Because
ZPL is not recompiled for different numbers of proces
sors, the ZPL compiler must insert additional code each
time an ensemble is accessed in order to dereference
ensemble elements, making it expensive to unnecessarily
access ensembles. This is never a problem in promoted
procedures, since the dereferencing is done before the
procedure is called. We thus reinspected the code, creat
ing as many promoted procedures as possible. In addi
tion, we subdivided many parallel procedures to make
additional promoted procedures, thus reducing ensemble
references. This reduces the special code required for
ensemble accesses, resulting in less overhead. These pro
cedure changes resulted in a surprising 16% decrease in
execution time.

The final optimization involved our statistics collec
tion, which are collected to better understand the perfor
mance of the chaos router. The serial simulator computes
statistics on a global basis while it is running, combining
information from all nodes. We had two options for the
parallel simulation: to collect statistics on a per-node
basis and combine the data at some intervals, or to collect
statistics on a per-processor basis. We began with the first
option, to collect statistics on a per-node basis, combin
ing the data at a "reasonable" interval. We immediately
faced a trade-off. The longer the interval was between
combining data, the more memory the simulation used to
store the data it was collecting. On the other hand, the
combination basically was a global sum, which is an
expensive, serial operation (even with language support
from ZPL). We were not able to find a good point in this
space. If we combined data too frequently, we had com
munication bottlenecks, and if we waited too long we
used up a large amount of memory, causing thrashing.
Thus we considered the second alternative: collecting
data on a per-processor basis. Unfortunately, there is no
provision for this type of operation in ZPL. After talking
with the ZPL designers, we wrote some C subroutines for
data collection that were linked in with the ZPL code.
This provided a "hook" for our data collection and
improved the performance of the parallel simulation.
While this optimization is more evident for larger config
urations of the chaos router, we still obtained a 5%
improvement for a 64-node router.

These four optimizations reduced the fun-time of the
ZPL implementation dramatically. The ZPL implementa
tion now runs only 2.38 times slower than the serial
implementation on a one-processor Paragon. Figure 2
illustrates the improvement for each of the four optimiza
tions for a 64-node router on the Intel Paragon. Note that
some optimizations such as statistics will show greater

Figure 2: Improvement in Execution Time for ZPL
Optimizations

812 RiCllClTdsOll, Baile,F. Sanders

Figure 3: Execution Times on the Intel Paragon

The 16-node experiments were run to see how the com
munications affected the performance of the parallel sim
ulator. Clearly a parallel machine is not necessary for this

Not all possible permutations of these parameters were
run; the larger-sized experiments (nodes greater than
1024) were measured only on the larger numbers of pro-
cessor due to performance problems. These will be dis
cussed later in this section.

Below is a graph of the execution times for all of the
experiments with a load of 80%. This load was chosen
since it is the heaviest load. In all cases, the one-proces
sor parallel version is somewhat slower than the serial
version, so additional processors are needed to "break
even" or to show an improvement. Not surprisingly, the
16-node instance fails to run faster than the serial imple
mentation, but all other versions do outperform the serial
implementation, given sufficient numbers of processors.
The 4096 instance was not run on the Paragon for one
and two processors, due to thrashing (all processors
shared the same disk, so performance seriously degraded
when much swapping occurred). For similar reasons, the
16384-node instance was only run on 16 processors. This
version was too large to be run on the serial simulator. As
the instances grow, the relative performance increases,
and we see greater improvements over the serial version.
Moreover, we are able to run larger experiments on the
Paragon than can be run on the serial version (the 16384
node instance). We now discuss specific issues in the
experiments to illustrate performance issues in the paral
lel simulator.

8 16

"

4

+

o 16 Nodes

- - A - - 64 Nodes

- ... - 256 Nodes

- -)(- - 1024 Nodes

- -+ - - 4096 Nodes

_- - 16384 Nodes

2
Processors

X
I \

I \, \

I ,

I \

I X
x: ' , ,

+

Serial

5000

improvement for larger router sizes. There is still room
for improvement. For example, the ZPL compiler pack
ages code that is passed between ensemble elements
residing on the same processor as if it were being sent to
another processor, increasing overhead. With additional
compiler improvements and improvements in our code,
we expect the execution time of the parallel code to con
tinue to improve, although we don't expect the ZPL pro
gram to ever be as fast as the serial one.

In summary, our experience with ZPL has been quite
positive. The language proved to be easy to use, with
good documentation (Forman and Lin 1994, Lin 1994,
Snyder 1994), and the compiler is reasonably efficient.
The ZPL compiler was still under development during
this project, and the compiler team was very helpful in
fixing bugs that we found in the compiler and telling us
when we were at fault.

4 EVALUATION OF THE SIMULATION

We now turn to the performance of the chaos router simu
lator on multiple processors. There are two main evalua
tion metrics that were used to measure the performance
of the parallel simulator:

The execution time of the parallel simulator and its
relationship to the speed of the (existing) sequential
simulator, and
The portability of the parallel simulator and its ability
to run on different architectures.

Performance tests were run on (1) a 16-node Intel Para
gon and (2) a small network of Digital Alpha worksta
tions (eight workstations). These are two very different
architectures, with different cOlnputation/communication
ratios. Thus they should provide useful insight into any
architecture-related issues in performance.

Three parameters were varied in these experiments:
Load, the number of router messages generated as a
percentage of the rate that would saturate the network~

Processors, the number of processors used in the par
allel simulation~ and
Nodes, the number of router nodes in the simulation.

We first discuss the performance of the parallel simulator
on each of these platforms, and then we discuss the
impact of the platform on the simulation.

4.1 The Intel Paragon

The Intel Paragon used in these experiments has 16 pro
cessors, each with 32MB of memory. Below are the
paralneters used for these experiments.

Load: 200/0, 400/0, 600/0, 800/0
Processors: 1, 2, 4, 8, 16

Nodes: 16, 64, 256, 1024, 4096, 16384

Using ZPL to Develop a Parallel Chaos Router SilllulatoT

Figure 4: Effective Speedup of the Chaos Router
Simulation on the Intel Paragon

201510
Processors

5o

D 16 Nodes

- - A - - 64 Nodes
7 -.- - 256 Noddes

- -)(- - 1024 Nodes
=+-

6 - - + - - 4096 Nodes

5
;X

0..
=' ~

"'0 ~
<U 4<U ~
0..

rzl ~

~<U

+~
~

.~
3

,/
U ,X ,/
~
!.+-< , I ,/
~

,1~
2 • I

'¥/ .- -/1
7° .- -/1- - ' --
~.-

D 16 Nodes
14 - - A - - 64 Nodes

-~ - 256 Nodes

12 - -)(- -1024 Nodes)<
I

I

10
I

I

0.. I

=' I
"'0

I<U 8 ~<U
0.. I

C/j

~
/

<U
> /'
~ 6 I

Q) ' 0 /0:::

" /4 .- _ .- -/1
.- ./1'- .-

2

0
0 5 10 15 20

Processors

Figure 5: Relative Speedup of the Chaos Router
Simulation on the Intel Paragon

load, with the 200/0 load showing much poorer perfor-

mance.

sized experiment. In particular, this instance stresses the
communications of the Paragon, since there is a small
computation/communication ratio. We had, in fact,
expected to see perfonnance degrade as the number of
processors was increased. To our surprise this didn't hap
pen. The execution time actually decreased slightly when
going from 8 to 16 processors.

The 64-node instances were again used to calibrate the
"break-even" point for the parallel simulation. Here we
observed some improvement over the serial version
above two processors. It is in the 256-node instances
where the perfonnance of the parallel simulator begins to
show reasonable improvement over the serial simulator.
Here, we gain an improvement of approximately 3.5 over
the serial version (and an improvement of 8 over the one
processor parallel version). This trend continues in the
larger instances.

We now address speedup. Figure 3 shows the speedup
of the parallel simulator vs. the serial simulator (effective
speedup), and Figure 4 shows the speedup of the parallel
simulator vs. its one-processor instance. Not surprisingly,
the speedup curves are better for the larger problem sizes,
and the relative speedups are much better than the effec
tive speedups. For the 4096-node instance, the largest
instance recommended for the serial router, the Paragon
with 16 processors can improve the execution time by a
factor of 6.4, a significant improvement since the serial
version takes almost 8 hours to complete.The 16-proces
sor Paragon is a good choice for 256 or more nodes.

The relative speedup is more impressive than the effec
tive speedup, due to the fact that the one-processor ZPL
program is around 2.4 times slower than the serial ver
sion. As the problem size increases, the speedup curves
come closer to the ideal speedup; in the best case, we
achieve a speedup of 1.89 in the 1024-processor instance
when we go from one to two processors. As we "opti
mized" the ZPL program, the relative speedups tended to
remain constant, while the effective speedups improved,
implying that if we make additional optimizations in the
ZPL code we can expect to see corresponding improve
ments in the effective speedup.

Thus far, we have fixed the load to be 80%; what effect
does changing the load have on the execution times? We
have run all of the different instances discussed above
with various loads, ranging from 200/0 to 800/0. For all
instances, the execution times increase as the load
increases, but the speedups also increase with increasing
load, probably due to better balance among the proces
sors. As an example, Figure 5 shows a plot of the effec
tive speedup of the 256-node router with various loads.
This plot is typical. The effective speedups are similar for
each load, but they do increase with increased load. We
had actually expected more of an impact from processor

814 Richardson, Baile.,', Sanders

842

Processors

D 256 Nodes

- -A - - 1024 Nodes

- ... - 4096 Nodes

- -)(- - 16384 Nodes

Serial

\

\

---------.....,\
\

x

the network is connected via an Ethernet bus, which only
allows one message to be transmitted at a time. Thus all
messages are serialized here, while in the Paragon, multi
ple messages can be transmitted simultaneously. Second,
ZPL uses PVM to interface to the network. This means
that it uses the TCPIIP protocol to send messages. While
the TCPIIP protocol is robust, it incurs a nontrivial soft
ware overhead cost that must be borne by the parallel
program. Finally, we cannot be completely sure that there
was no other network traffic competing for the limited
Ethernet bandwidth, although we believe that this effect

was minimal.

0 -... .-.-........

Figure 7: Execution Times on the Digital Alpha
Cluster

The effective and relative speedups are shown in Fig
ures 7 and 8, respectively. We do not include the 16384
node instances because we have no serial or one-proces
sor baseline, since the problem size is too large for a uni
processor. It is clear from the effective speedup curve that
only the 4096-node instance has any speedup, and that
the speedup here is minimal. Perhaps more interesting is
that fact that this is true for the relative speedup too. It is
not the slowdown of the parallel implementation that
appears to be hurting performance, but rather the compu
tation/communication ratio. For good performance on an
Ethernet with this high-performance processor, we need
lots of computation per processor.

The effect of nodes on speedup was not as clear for the
Alpha as for the Paragon. The general trend still held
that an increased load tended to increase the effective par
allelism. However, there were instances where this trend
did not hold. For example, the effective speedup
decreased from 0.71 to 0.43 when going from a load of

201510

D 200/0 Load

- - A - - 400/0 Load

- ... - 60% Load

- -)(- - 80% Load

Processors

5

3

o
o

0.5

3.5

Figure 6: The Impact of Router Load on Effective
Speedup Using 256 Nodes

4.2 The Alpha Cluster

The Digital Alpha cluster used in these experiments is a
subset of the faculty workstation network of the Com
puter Science Department at the University of Arizona.
The network is connected via an Ethernet and was not
isolated from outside traffic during the runs, since we
were not allowed to disturb the nonnal operation of the
departmental system. However, we did make every effort
to use idle workstations and run the experiments during
Hoff hours." Due to the number and availability of work
stations, we limited the experiments to eight worksta
tions. All were identically configured with 64MB of
men10ry. Below are the parameters used for these experi
ments.

Load: 200/0, 400/0, 600/0, 800/0
Processors: I, 2, 4, 8
Nodes: 16,64,256,1024,4096,16384

Not all possible permutations of these parameters were
run; the largest-sized experiments (16384 nodes) were
measured only on four and eight processors due to the
length of time taken for the simulation.

The execution times for the larger experiments (256
nodes and greater) using 80% loads are shown in Figure
6. We don't show the 16- and 64-node instances here;
they exhibited fairly large slowdowns due to the small
number of nodes per processor (Richardson 1995). Note
that we only gain performance improvements over the
serial simulator in the largest two instances (4096 and
16384 nodes). This is likely due to several factors. First,

Using ZPL to Develop a Parallel Chaos Router SiJnulator 815

4.3 Comparing the Performance Results

The Alpha and Paragon provided very different architec
tural platforms on which to test the effectiveness of the
parallel chaos router. The processor on the Paragon, the
i860, is much slower than the Alpha processor, while the
Paragon's interconnection network is much faster. More
over, the Paragon's interconnection network essentially
"matches" the communication patterns of the router,
while the Ethernet serializes all communication.

These differences manifested themselves in the perfor
mance of the parallel simulation. On the Paragon, thrash
ing occurred more quickly than we had expected from the
serial results. For example, we should have been able to
run the 2048-node parallel simulator on a single proces
sor without undue thrashing. One effect that we had
failed to consider originally is that the parallel simulator
uses substantially more memory than the serial version,
because in the serial version memory could be dynami
cally allocated and pointers were often used to pass infor
mation. These were not possible in the parallel simulator
because pointers cannot be used when the data are spread
among multiple processors. Because each Alpha proces
sor has twice as much memory as a Paragon processor,
thrashing was not as evident on the Alpha cluster. More
over, each Alpha has its own disk, while the Paragon pro
cessors all share a single disk array, which further
exacerbates thrashing on the Paragon.

Overall, the two architectures complemented each
other quite nicely. For small- to medium-sized problems,
the Paragon had the best performance. This is likely due
to its communication network. The mesh interconnection
network maps well to this problem, and its speed is also
faster than the Ethernet. This makes interprocessor com
munication much more efficient. However, for large
sized problems, the Paragon ran into memory limitations.
In these cases, the Alpha cluster performed better. In fact,
the Alpha cluster can run larger-sized router nodes than
can run on a single Alpha. Each Alpha processor has
more memory, and the computation/communication ratio
is more favorable for the Ethernet for large router sizes.
Thus the user can choose the best platform for the router
simulation based on the router size, using the Paragon for
medium-sized problems and the Alpha cluster for the
larger problems.

In this paper, we discussed our experiences in using ZPL
for a parallel chaos router simulator. ZPL was easy to
use, although we did have to understand some aspects of
the compiler in order to obtain more efficient perfor
mance. The lack of dynamic memory, especially for use
with a single node, proved somewhat difficult. but we

5 CONCLUSIONS

10

10

8

8

6

./'
./'

D 256 Nodes

- -A - - 1024 Nodes

- .- - 4096 Nodes

4

4 6
Processors

2

2

D 256 Nodes

- -A - - 1024 Nodes

- ~ - 4096 Nodes

A , ' .A::..
~' ""

o
o

1.4

1.2

0.4

O. 2~................................o..-..&........~.-.........Ioo..ooI....

o
Processors

1.6

0.2

1.4

1.2

Figure 8: The Effective Speedup of the Chaos
Router Simulation on the Digital Alpha

Figure 9: The Relative Speedup of the Chaos
Router Simulation on the Digital Alpha

600/0 to 800/0 using 1024 nodes on eight processors. It is
not clear whether these experiments were anomalous; we
have not yet had enough access time to replicate the
experiments sufficiently to insure that the measured dif
ferences are due to program effects rather than to interfer
ence from other Ethernet traffic. For the experiments
where we achieved positive speedup, node sizes of 4096
and above, we saw none of the anomalies.

816 llicllardson, Baile.,", Sanders

were able to use static memory with little difficulty. The
ability to write C routines to be called from ZPL proved
invaluable for gathering statistics about the perfonnance
of the chaos router. Moreover, ZPL's portability allowed
us to test the parallel simulator on different architectures
without rewriting the simulator.

While we achieved our original goal of a faster parallel
simulator, the parallel simulation running on a single pro
cessor is still slower than the optimized serial simulator
by a factor of approximately 2.4. We expect some
improvement in this factor as the ZPL compiler matures,
but the one-processor parallel implementation will
remain slower than the serial one. This is because the par
allel program has inherent overheads (as compared to C)
due to the fact that pointers cannot be used for data that
can be partitioned across multiple processors in non
shared memory architectures.

The two architectures tested here complemented each
other nicely. The Paragon perfonned best for medium- to
large-sized routers, likely due to the lower computation/
communication ratio (it has a slower processor and a
faster interconnection structure than the workstation clus
ter), and the fact that the interconnection structure
mapped well to this problem. However, it was susceptible
to thrashing for large routers. The workstation cluster
appears to be limited by the Ethernet and PVM for
medium-sized routers, but it could simulate really large
routers that are not viable for either the Paragon or a sin
gle Alpha. With a faster interconnection such as an ATM
network, we expect the perfoffi1ance of the workstation
cluster to improve for medium-sized problems.

REFERENCES

Bolding, K., M. Fulgham, and L. Snyder. 1994. The Case
for Chaotic Adaptive Routing. Technical Report UW
CSE-94-02-04, University of Washington.

Bolding, K., and L. Snyder. 1992. Mesh and Torus Cha
otic Routing. In Advanced Research in VLSI and Paral
lel Systenzs: Proceedings of the 1992 Brol,1JnJMIT
Conferences, 222-247.

Fonnan, G., and C. Lin. 1994. ZPL Tutorial. Technical
Report, Computer Science and Engineering Depart
ment, University of Washington.

Konstantinidou, S., and L. Snyder. 1994. The Chaos
Router. IEEE Trans. on Conzputers 43(12):1386-1397.

Lin. C. 1994. ZPL Language Reference Manual. Techni
cal Report UW-CSE-94-10-06, Univ. of Washington.

Lin, C., and L. Snyder. Data Ensembles in Orca C. 1992.
In 5th Workshop on Languages and Con1pilers for Par
allel Conzputing, New Haven, CT.

Lin, C., and L. Snyder. 1993. ZPL: An Array Sublan
guage. In Languages and Compilers for Parallel COln-

puting, IT. Banerjee, D. Gelernter, A. Nicolau, and D.
Padua, editors, 96-114. Springer-Verlag.

Snyder. L. 1994. A ZPL Programming Guide. Technical
Report UW-CSE-94-12-02, University of Washington.

Richardson. G. W. 1995. Evaluation of a Parallel Chaos

Router Simulator, Master's Thesis, Dept. Of Electrical
and Computer Engineering, University of Arizona.

AUTHOR BIBLIOGRAPHIES

WILKEY RICHARDSON is a Member of the Techni
cal Staff at Hughes Missile Systems Company working
on real time simulation. He has previously been an engi
neer at Kaman Corp., Raytheon Co., and Sperry Corp. He
received a BS in Computer Science and Mathematics
from the University of Kentucky in 1982, and an MS in
Electrical and Computer Engineering from tAe University
of Arizona in 1995.

MARY L. BAILEY is a Senior Member of the Technical
Staff at Rincon Research Corporation. She was previ
ously an Assistant Professor in the Computer Science
Department at the University of Arizona. She received a
B.A. in Mathematics and Physics from Vanderbilt Uni
versity, and an M.A. in Mathematics and M.S. and Ph.D.
in Computer Science and Engineering from the Univer
sity of Washington. She was Program Chair of PADS'95
and General Chair of PADS'96. She also served on the
executive committee of ICCAD (1993-1996). Her
research interests include parallel and distributed simula
tion, logic simulation, and special-purpose architectures.

WILLIAM H. SANDERS is an Associate Professor of
Electrical and Computer Engineering and Research
Associate Professor at the Coordinated Science Labora
tory at the University of Illinois at Urbana-Champaign.
His research interests include methods for performance,
dependability, and performability evaluation, computer
networks and protocols, and fault-tolerant computing. He
is the developer of two tools for assessing the perfonn
ability of systems represented as stochastic activity net
works: METASAN and UltraSAN. UltraSAN has been
distributed widely to industry and academia, and is cur
rently being used at more than 100 universities, five com
panies, and NASA. His research awards include the
Digital Equipment Corporation Incentives for Excellence
Faculty Award 1989-1991. He is a member of the IFIP
Working Group 10.4 on Dependable Computing and is
also a member of Sigma Xi and Eta Kappa Nu academic
honor societies.

