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ABSTRACT

The focus of the paper is on the application of an
experimental design methodology to a semi-conductor
manufacturing simulation model. A complex \vhole
line simulation model of a semiconductor fab is built.
Seventeen input factors are set for investigation
through a 2-stage group-screening experimental
design. A multiple response regression metamodel is
built to define the relationships between the significant
input factors and the four response variables of interest.
The combination of simulation modeling methods with
exrperimental design and regression analysis techniques
allows the development of a flexible tool for capacity
analysis of a semiconductor manufacturing facility.

1 INTRODUCTION

As semiconductor companies look for \vays to increase
their competitiveness, many are turning to simulation
modeling to help them control their facilities.
One of the major manufacturers of Application
Specific Integrated Circuits (ASIC), has formed an
operations research team whose main task is to create
simulation models and to assist the company's
management in making its future business decisions.
At present, simulation is the only tool that is capable of
modeling the complex, often random nature of the
semiconductor manufacturing environment.
Simulation modeling, however, has certain drawbacks,
such as the lack of optimization capability. Also, the
simulation model is often referred to as a "black box",
because the explicit relationships between its input and
output parameters are typically unknown. That is why
simulation modeling becomes most effective in
combination with other analysis methods, such as
experimental design and regression analysis.
Experimental design allows examination of the input
factor effects on the system response variables. In
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cases where the effects of less than 11 input factors are
studied, Biles (1984) recommends the application of
fractional factorial designs for the simulation
experiments. Research presented by Hood and Welch
(1990, 1993) sho\vs the application of fractional
factorial Resolution III and IV designs in modeling the
logistics of semiconductor manufacturing lines. In
cases where more than 11 input factors are studied, the
recommended type of design is a group-screening
design. A 2-stage group-screening procedure was
introduced by Watson (1961) and further developed for
multiple-stage designs by Patel (1962) and Li (1962).
Significant contribution to the group-screening design
method has been made by Mauro and Smith \vith their
nunlerous papers on the robustness and effectiveness of
the method (Mauro and Smith 1982, 1984, and Mauro
1984).
Based on the experimental design results, regression
analysis equations are built to define the relationships
bet\veen the input factors and the measures of
performance. The regression metamodel concepts were
introduced to simulation by Kleijnen (1979). A long..
term advocate for the implementation of multiple
response regression metamodels to simulation output
analysis is Friedman (1984, 1987, 1989).
Although group-screening design combined with
regression metarnodel analysis appears \vell suited for
the analysis of large-scale semiconductor
manufacturing simulation models, there is a limited
number of papers dealing with this type of
experimental design application. The objective of the
present study is to build a whole-line simulation model
and to estimate the future Work-In-Process (WIP)
levels, cycle times and throughputs for two basic
semiconductor products. Further, the most significant
input factors for the production measures of
performance are to be identified through the
application of group-screening design to the simulation

model.
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The organization of the paper is as follows: in Section
Two an oveIView of the theoretical aspects of the
grou~-screening experimental design and multiple
response regression metamodels is presented. Section
Three presents the whole-line simulation model
definitions and the output analysis steps. Section Four
includes the application of a 2-stage group-screening
design to the simulation model and the multiple
response regression metamodel analysis. Finally,
Section Five summarizes the results from present
research.

2 THEORETICAL BACKGROUND

2.1 Two-Stage Group Screening Design

Watson (1961) suggests that the k input factors in a
model can be separated into g groups of f factors
each, by any method. Each group is then considered as
a single factor called group-factor. At the upper level
of a group-factor, all factors in that group are at their
high levels. The lower level of a group-factor is
determined by setting all individual factors at their low
levels. If a group-factor is found to be significant, a
second stage of the design is set, where the original
factors from the significant groups are tested
individually. If after the first stage there is still a
considerable number of important factors left in the
experiment, further regrouping might be applied and
the group-screening process will then have more than
two stages (Li 1962 and Patel 1962). Kleijnen (1987)
recommends keeping the "unimportant" factors at
fixed levels during the nex1 stages of the experiment.

2.2 Multiple Response Regression Metamodel

After every group-screening design stage, the most
significant input factors are determined by the use of
regression analysis. Multiple response regression
metamodels relate each system response to the most
significant input factors. The simplest multiresponse
metamodel is the additive first-order (linear) nlodel.
Multiple linear regression equations are typically built
after each experimental stage and a global F-test is
used to analyze the hypothesis that all regression

model coefficients, Plim' equal zero. Then, through

individual t-tests, the significant input factors are
determined. The insignificant factor deletion
procedure is iterative, (i.e. one factor is deleted at each
step, after which the t-tests are run again). After
including only the significant group-factors, a linear
regression metamodel is built. The significant input
factors are used as individual or group-factors in the

second stage of the group-screening design. At the
second experimental stage, similar tests are performed
to determine the significant input factors and so forth.

3 THE WHOLE-LINE SIMULATION MODEL

3.1 Model Assumptions and Definitions

The ManSimIX simulator, developed by Tyecin
Systems Inc., was used to build the fab simulation
model. ManSimIX has been specifically designed for
capacity analysis and production planning of
semiconductor manufacturing facilities.
The whole-line simulation is a model of a 6"
semiconductor wafer fab with more than 250 machines
and operators, grouped into multiple work areas. Two
basic recipes for two products are included in the
model. Different operational rules are used to control
the interactions between the model elements.

3.2 Model Validation and Output Results

The model validation processes included variable
reasonableness tests, conceptual and operational
validity tests, comparisons with mathematical models,
etc. Based on the WIP autocorrelation functions for
five runs, a warm-up period of 90 days was
determined. All statistical calculations used in further
simulation runs were based on the truncated "steady
state" time series with a length of 270 days. An overall
confidence level of 0.80 was set for four system
measures of performance, namely cycle times for
Product 1 and Product 2, and throughputs for Product 1
and Product 2. By using Bonferroni's inequality, the
individual confidence level for each response was set at
0.95.
Queue size analysis showed that implanters, steppers
and etchers are the three most critical production
facility groups. The comparatively large queue sizes at
these workstations, which form even in the case of
stable WIP output time-series, remind of the danger
that the workstations could easily become a fab
"bottleneck" at certain conditions. Therefore, there
was a need for further study to identify the factors
which are significant for the performance of these three
workstations and for the overall factory performance.

4 GROUP-SCREENING EXPERIMENTAL
DESIGN

4.1 Group-Screening Design - Stage I

The objective of the group-screening experimental
\vork ,vas to determine the importance of certain input
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The defining relation for this Resolution IV design is :

factors on the four simulation model responses,
namely, the cycle times for Products 1 and 2, and
throughputs for Products 1 and 2. Seventeen input
factors were selected at the beginning of the
experiment. Fifteen input factors are related to the
three most critical wafer fab facility groups, namely
implanters, steppers and etchers and two input factors
are related to the overall fab performance. Following is
a list of the input factors for Stage I screening process:
Xl = MTBF (Mean Time Between Failures) for

steppers
X2 =MTBF for implanters
X3 =MTBF for etchers
X4 =M1TR (Mean Time to Repair) for steppers
X5 = M1TR for implanters
X6 =M1TR for etchers
X7 = Lot Dispatch Rule for steppers (the rule by which

a lot is chosen from the queue in front of a
machine)

X8 = Lot Dispatch Rule for implanters
X9 = Lot Dispatch Rule for etchers
XIO =Number of steppers
XII =Number of implanters
XI2 =Number of etchers
XI3 =Operator/machine Ratio for steppers
X14 =Operator/machine Ratio for implanters
XIS =Operator/machine Ratio for etchers
X16 = Lot Release Rule (the rule which organizes the

lot release into production)
Xl7 = Hot Lots percentage for both products.
The seventeen input factors were tested for significance
through a group-screening design. By using factor
grouping rules (Watson 1961), seven group-factors
were fanned at the first design stage, as shown in
Figure 1.

A two-level fractional factorial 2iv3 design with 16

design points and 5 replicates for each was planned.
A full factorial design was set for the first 4 variables
?4, B, C, D) . The rest of the design input variables E,
Fand G were defined as design generators, where

E =ABC,o F = BCD; G =ACD (3)

factor level setting. Then, the high factor levels were
set as an improvement over the base level for each
factor.

Figure 1: Group-Screening Design - Stage I

This method for setting the low and high factor levels
ensures that there is sufficient resource capacity and
that the model is stable for all experimental runs
(Hood and Welch 1992).

Table 1: Group-Factor Levels

Group -
Low Levels High Levels

Factor Name

Description
( -1) ( +1)

MrBF A base 2*base

MTTR B base .6 * base

Lot Release
C FIFO

Fewest Lots at
Rule Next Queue

Number of
0 base base + 1

Machines

Operator I
machine E base 1.5 * base

Ratio

Lot Dispatch
F Random Constant

Rule

Hot Lots G 10% 5%

I =ABCE = BCDF = ADEF = ACDG = BDEG
=ABFG = CEFG (4)

Table 1 defines the low and high levels for each group
factor. The low level for each factor was chosen to be
more constraining to the simulation model compared to
the high input factor level. Trial runs were perfonned
to make sure that the model is stable under the low

As a next step the IMP software, a product of SAS
Institute Inc., was used to build a multiple response
regression metamodel based on the Stage I results and
to detennine the significant group-factors. It was
assumed that the simulation model output results
could be generalized in a linear regression
metamodel with no interactions between the group
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screening factors and no quadratic terms. The
qualitative nature of some of the input factors and the
narrow range between the low and high factor levels
for others, let us maintain the linearity assumption.
The F- test results appear in Table 2. All probability
values p are less than O.05~ therefore, all four models
are statistically significant. The regression coefficients
for the four response variables were tested one at a time
using t tests and are presented in Table 3. The shaded
regression coefficients have p values of less than 0.05
and are considered statistically significant.

In conclusion, at the end of stage I of the group
screening design, input group factors MTBF, Lot
Dispatch Rule, Number of Machines, Lot Release Rule
and Hot Lots were declared statistically significant for
at least one of the four output responses. Therefore,
these group factors were further investigated in Stage
II of the experimental design. On the other hand, the
MTfR and Operator-to-Machine Ratio group-factors
were found insignificant with respect to all responses
and \vere dropped from the next experimental stage.

Table 2: Least-Squares Analysis Table by Response Variable - Stage I

Response Variable Source dJ.
Sum of Mean

F Ratio Prob>F RSquare
Squares Square

Cycle Time for
Model 7 21379.22 3054.17 7.86 0.0047 0.87

Product 1 (hrs)
Error 8 3108.655 388.58
Total 15 24487,88

Cycle Time for
Model 7 17057.48 2436.78 7.944 0.0045 0.87

Product 2 (hrs)
Error 8 2453.95 306.74
Total 15 19511.43

Throughput
7 4407.69 629.671Product 1 (wafers) Model 15.939 0.0004 0.93

Error 8 316.04 39.505
Total 15 4723.73

Throughput
6 5270.347 878.391Product 2 (wafers) Model 8.681 0.0025 0.85

Error 9 910.67 101.186
Total 6181.018

Table 3: Linear Regression Metamodel Coefficients - Stage I

Input Factors

Lot Number of1 Operator' I Lot I
Intercept MTBF MTIR Dispatch Ma hi Machine Release Hot Lots

Rule c nes Ratio Rule

Regression Coefficients

Response Variable

Cycle Time for
Product 1 (hours)

Cycle Time for
Product 2 (hours)

Thruput for Product
1 (wafers)

Thru put for Product
2 (wafers)

Average Standard
Value Deviation

762.2 23.55

6984 2131

12947 2341

21838 2645

po pi P2 pJ fJ4 pS P6 P7

-1.53 ..'4~~ '.:.' -3.47 -6.71 -48
.'.

-:::
-299 ;';11 :r l' -0.74: :~1:1:; -5.56 -5.08

-059 -0.59 -211 1.44

0.29 3.2 i!.?\6rj 2.775 lWEI
:;::> ,::

Note: ~........................;...,.I The shaded cells mark the significant Input factors regression coefficients.
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4.2 Group-Screening Design - Stage n

In Stage II, the five significant group factors were
separated into individual factors. The separation of the
three significant group-factors (MTBF, Lot Dispatch
Rule and number of machines) and the two single
factors (Lot Release Rule and "hot lots") resulted in 11
individual input factors to be examined in the second
stage of the exrperimental design, as follows:
A=MTBF for steppers
B = MTBF for implanters
C = MTBF for etchers
o =Lot Dispatch Rule for steppers
E =Lot Dispatch Rule for implanters
F = Lot Dispatch Rule for etchers
G= Number of steppers
H = Number of implanters
I = Number of etchers
J = Lot Release Rule
K = Hot Lots percentage for both products.
To obtain a Resolution IV experimental design and to
minimize the number of simulation runs, a Plackett
Burman design with 24 runs was performed at this
stage. Each run was replicated 5 times. A total of 120

simulation runs were performed, equivalent to almost
120 hours of computer run time. As in Stage I of the
experiment, the global F-test for the model adequacy
indicated that all four models are significant (see
Table 4). Table 5 displays the regression coefficients
for all input factors, where the significant input factor
coefficients are shaded. As shown in Table 5, the
MTBF at etchers, the Lot Dispatch Rule at implanters
and etchers, the number of machines at steppers and
implanters, and the Lot Release Rule have significant
positive effects on the two cycle time variables, (i.e.
cycle times decrease when these factors are set at their
high levels - see Table 1). The "hot lots" percentage
does not have a significant effect on the average cycle
time for the products, which could be expected.
Although the "hot lots" cycle time decreases, the cycle
time for the "regular" lots increases, therefore, the
average product cycle time does not change. Factors
which have significant influence on the throughput
levels are the MTBF at implanters, Lot Dispatch Rule
on the implanters and etchers, number of machines in
the steppers, etchers and implanters groups, the Lot
Release Rules and the percentage of Hot Lots.

Table 4: Least-Squares Analysis Table by Response Variable - Stage II

Response
Source d.f.

Sum of Mean
F Ratio Prob>F RSquareVariable Squa re 5 Squa re

Cycle Time for
Model 10 22229.76 2222.98 11.49 < .0001 0.896

Product 1 (hrs)
Error 13 2514.34 193.41
Total 23 24744.11

Cycle Time for
Model 10 25557.18 2555.72 11.23 < .0001 0.898

Product 2 (hrs)
2958.51 227.58Error 13

Total 23 28515.69

Th rou 9 h put odel 8 3362.83 420.35 8.26 0.0003 0.815
Product 1 (wafersr

Error 15 763.49 50.89
Total 23 4126.32

Throughput odel 12 17936.24 1494.69 20.67 < .0001 0.957
Product 2 (wafersr

Error 11 795.54 72.32
Total 23 18731.79
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Table 5: Linear Regression Metamodel Coefficients - Stage II

Input Factors
Numbir_ Number Number_ Lot

MTBF MTBF MTBF Lot Lot Lot Mach Mach Mach Hot Lots
Intercept step- imp!- etch- Dfsp_step OISPJmpl 01sp_etch dAD- Imol- etch- Release

Regression Coefficients

Average Standard
Response vartable

Value Devtatlon
Cycle Time for

747 26.2Product 1 Ihoursl

Cycle Time for
684.1 22.1Product 2 (hours)

Thruput for
1289.2 27.11Product 1 (wafers)

Thruput for
2181.6 32.63Product 2 (wafers)

po pJ fJ2 fJ3 fJ4 Ps fJ6 fJ7 PH P9 pJO fill

Note: l:::::;::::::::::::::::::::::::!The shaded ceJls mart< the significant Input factors regression coefficients.

Note that the decrease in the percentage of "hot lots"
from 10% to 5% has a significant positive influence on
the throughput of Product 2. The only factor which
has no significance on any of the four response
variables is the MTBF on steppers. The Lot Release
Rule, on the other hand, has a significant influence on
all four responses. A conclusion could be made that the
higher the number of response variables, the harder it
becomes to identify factors that are totally insignificant
for all response variables.

5 CONCLUSIONS

A whole-line simulation model of an ASIC wafer fab
was built and validated. This model is a flexible tool
for capacity analysis of the semiconductor
manufacturing facility. Additionally, a 2-stage group
screening experiment was designed to study the
interactions between the input factors and the multiple
measures of performance. The experience with
performing group-screening design on a simulation
model with multiple responses leads us to believe that
although group- screening design is efficient in cases
with a large number of input factors and one response
variable, it is not as efficient when multiple response
variables are involved. At the end of stage I, only two
out of the seven group-factors were declared
insignificant which brings us back to the still
considerable number of eleven individual factors at the
second stage. Therefore, it could be concluded that the
greater the number of response variables, the less
efficient the group-screening design method becomes.
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