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ABSTRACT

This paper introduces a framework for on-line
simulation systems in the operational planning,
scheduling, and control of manufacturing systems. Five
basic concepts for software design of an on-line
simulation system are identified and an example
simulator is illustrated.

1 MOTIVATION

There has been a growing interest in real-time,
Hintelligent" shop floor control systems that use
simulation technology to predict the future impact of
short-term manufacturing decisions (Erickson et al.
1987, Wu and Wysk 1989, Harmonosky and Robohn
1991, Rogers and Flanagan 1991, Smith et ale 1994,
Drake et al. 1995, Jones et ale 1995). Although recent
researchers have examined the responsibilities and
underlying issues of on-line simulation systems, there
has been a tendency to view the simulation software as a
"black box" and examine solely its interactions with
other system components such as data collection
devices, neural networks, expert systems, genetic
algorithms, control mechanisms, and process planning
functions. Thus, the design of the simulation system
itself has been largely ignored and a framework for on
line simulation systems is still needed.

There is currently a large commercial market for
simulation-based analysis in manufacturing. This
market is illustrated by the demand for products such as
Arena/SIMAN® (Pegden et al., 1995), SlamSystem™
and FACTORTM (O'Reilly, 1995), Witness™ and
PROVISATM , Extend™ (Krahl, 1995), and
AutoModJAutoSched™. Some of these packages (e.g.,
Arena/SIMAN, Extend, Witness, SlamSystem) are
primarily designed for and used in design applications
(i.e., long-term, predictive analysis). Others, such as
AutoSched, PROVISA, and FACTOR, are primarily
designed for and used in short-term finite capacity
planning and scheduling applications. Irrespective of
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their primary focus, it is often difficult to implement
these systems in on-line planning, scheduling, and
control applications due to one or more of the following
reasons:

(1) The conceptual framework is geared
exclusively towards use by humans and not the decision
support software commonly found in shop floor control
systems for computer integrated manufacturing (CIM).

(2) The system does not employ modeling
constructs or a framework that facilitates the
development of simulation models intended for real
time use. This includes inadequate support for
modeling complex control logic, whereby either the
necessary constructs are not available or the modeling of
control logic is integrated with physical characteristics
such that changes are difficult to implement.
Additionally, many systems do not incorporate
constructs for real-time task dispatching.

(3) The conceptual framework implicitly assumes
that simulationists (i.e., modelers) and end-users are
identical by providing a single primary interface or a set
of "rigid" interfaces (e.g., a "scheduling" interface and a
Hmodeling" interface) for constructing models and
executing simulation experiments. However, in the
context of on-line planning, scheduling, and control
applications, end-users often include a variety of
personnel (e.g., schedulers, capacity planners,
managers) who were not directly involved in model
development, have little or no simulation expertise, and
who desire to use only a portion of the simulation tool.

The common inefficiencies of current commercial
packages and the increasing interest in real-time
planning, scheduling, and control indicate that an
effective framework for on-line simulation systems is
needed. When developing important concepts for such
a framework, it is useful to examine the applications of
on-line simulation technology.
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2 THE USERS OF ON-LINE SIMULATION
SYSTEMS

On-line simulation systems incorporate two powerful
features: 1) the ability to reliably predict the future
behavior of the shop floor given its current status, and
2) the ability to emulate and/or dictate the control logic
of a manufacturing system. These two capabilities offer
potential benefits to a variety of end-users in a
manufacturing organization. Figure 1 shows an on-line
simulation system integrated with several functional
areas of a facility.

First, simulation can help capacity planners
determine order lot sizes, release dates, and work
calendars for resources by incorporating simulated
scheduling constraints in their decision making.
Second, once orders are released, simulation offers real
time schedulers the ability to evaluate strategies for
sequencing jobs through the workcenters. In dynamic
manufacturing environments, it may be advantageous to
change the way a shop is controlled at certain points in
time.

Third, once the desired operational strategy and
part mix have been determined, simulation can interact
in real-time with shop floor management. Work lists
can be generated and distri buted to shop floor execution
or dispatched on-line in a task-by-task manner (Smith et
al. 1994). Running parallel to the actual system in real
time allows the simulation system to keep track of
current status and send feedback to the scheduling
function on the current schedule's perfonnance.

Fourth, by emulating current shop conditions,
simulation can help the marketing and sales functions

reliably predict order leadtimes and quote accurate due
dates to customers. Using simulation in this manner
can decrease the amount of work in process and add to
the reputation of the organization by improving its
ability to meet promised delivery dates (Rogers and
Flanagan 1991). Finally, the simulation system must
interact with engineering for the necessary data (e.g.,
process plans, layout information) to perform valid
analysis. Simulation output can give feedback to the
engineering function on the performance of a current
design (e.g., the layout of a workcenter).

3 CONCEPTS FOR ON-LINE SIMULATION
SYSTEMS

It is apparent that several functional areas of an
organization might interact with on-line simulation
technology. In response, five basic concepts for
simulation systems in on-line planning, scheduling, and
control are identified:

(1) The system should be multifaceted as
suggested by Zeigler (1980). A multifaceted
environment acknowledges that the system is
approachable from different points of view by different
users with different objectives at different times.

(2) The system should separate the logically
distinct activities of on-line simulation-based planning,
scheduling, and control. Thus, the functional stages of
modeling physical structure, modeling control logic,
simulation input, experimentation, output analysis, and
task dispatching should be distinguished through a
modular approach that recognizes the details and
mechanisms required for each element.
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Figure 1: An On-Line Simulation System for Planning, Scheduling, and Control.
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The simulation model developed for on-line
planning, scheduling, and control applications can be
decomposed into five primary functional elements.
These functional elements are:

(1) Physical Structure: The definition of
machines, people, tooling, transporters, and storage
areas in the facility, as well as the layout and decision
points of the manufacturing process.

(2) Task Dispatching: The simulator's I/O links
with external components for task dispatching and the
protocol of these messages.

(3) Control Logic: The operating rules (e.g.,
scheduling rules for equipment and people, batching
rules), simulator run-time parameters (e.g., run length,
output generation period), and exception handling (e.g.,
a dispatched task is not performed or is performed
improperly).

(4) Sinzulation Input: The product definitions
(e.g., routings, processing times, resource requirements,
bills of materials), product demand (e.g., order
quantities, due dates, start dates, priorities), resource
relationships (e.g., resource groups), and work
calendars (e.g., alternative shifts).

(5) Sinzulation Output: The start- and end-times
for tasks in the system. These times may include
additional "tag" information such as task codes, affected
products, or utilized resources.

Figure 3 illustrates the functional elements of an
on-line simulation model and their relationships with
the modeling and simulator environments in Figure 2.
Note that the modeling environment is separated into
two distinct frames or interfaces: the model frame for
defining the physical structure and task dispatching of
the simulator, and the rules franle for developing the
control logic or rule base of the simulator (e.g.,
alternative scheduling rules, batching rules, procedures
for exception handling). Functions for loading
simulation input from input databases and writing
simulation output to output databases are automatically
compiled during model development and do not require
manual editing. End-users define simulation input and

Figure 2: General Framework.
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When simulationists develop simulation models and
turn them over to end-users for experimentation, they
are delivering simulators. These end-users often
include plant engineers, managers, and sales
representatives with little or no simulation expertise.
Though they may contribute input or functional
specifications to the modeler(s) for project purposes,
these personnel are usually not directly involved in
model development. Instead, they require the simulator
for daily decision making and task dispatching. If the
same interface is used for these end-users as was used
for the simulationists, then these end-users have access
to simulation primitives that may be confusing no
matter how "easy" the package is to use (Brunner and
Crain 1991). Moreover, access to these primitives is
generally unnecessary.

Figure 2 shows a general framework for on-line
simulation systems in scheduling and control. In
departure from traditional simulation software, the user
interface is separated into two distinct environments:
the modeling environment for simulationists and the
simulator environment for end-users. The modeling
environment focuses on the simulation constructs and
logic necessary for developing simulation models
intended for on-line use. Once a model is completed, it
is "handed over" to the simulator environment which
focuses upon the activities that comprise the real-time
planning, scheduling, and control process (e.g., data
entry, experimentation, output analysis).

(3) The system should incorporate not only good
human interfaces, but also explicit software interfaces to
the activities of model development, simulation input,
experimentation, output analysis, and task dispatching.

(4) The system should allow a model of a
manufacturing system to be re-used for design,
planning, scheduling and contro~ ~th minimal
modification within and between applIcatIons.

(5) The system should be flexible yet easy to use
for modelers and end-users (Pinedo 1995). Flexibility
within the simulation system is necessary for modeling
complex control logic and reusing resident simulation
models. The ease of use of the software is dependent on
how well the skills and perspectives of end-users are
recognized (i.e., a multifaceted environment).

4 GENERAL FRAMEWORK
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manipulate simulation output (e.g., generate Gantt
charts) through the simulator environment.

The modeling environment's organization
incorporates flexibility into the simulation system in two
primary ways. First, it facilitates the development of
simulators which separate the functional elements of
physical structure, control logic, simulation input, and
simulation output so that different scenarios (e.g., part
mixes, scheduling rules, work calendars) can be readily
"plugged in" and evaluated without model
recompilation. Constructs for modeling task
dispatching are incorporated with constructs for
modeling physical structure such that the same model
used for design, planning, and scheduling can be used
for direct shop floor control. Thus, within the simulator
environment, end-users exploit generic, reusable models
designed for easy "what if' experimentation and
automated execution. This concept is referred to as
flexible sinzulation (Drake et al. 1995). The modularity
of the rules frame facilitates the addition of new rules to
the simulator's rule base.

Figure 3 shows the simulator environment
separated into three distinct frames: the entity franze for
simulation input (e.g., entering production data), the
experinzent frame for experimentation and execution
(e.g., selecting operating rules from the rule base), and
the Olltput analysis frame for data manipulation and
presentation (e.g., creating Gantt charts, order
tracking). The interactive nzontitor provides a real-time
interface to the on-line simulator tool. This monitor
might include real-time animation, and could feasibly

be detached from the simulator environment and
implemented "stand-alone" at workcenters for real-time
interaction (e.g., entering status and receiving tasks
from the simulator).

Additionally, the proposed simulator environment
incorporates software interfaces for the activities of
simulation input, experimentation, output analysis, and
real-time task dispatching. These software interfaces
are illustrated in Figure 4. A simulator language to the
manager of the simulation engine facilitates the
automation of real-time planning, scheduling and
control applications. The language incorporates
commands for verifying simulator programs (i.e.,
debugging), loading simulation input from the entity
frame, setting up and executing simulation experiments
in the experiment frame, and calling analysis and
presentation routines in the output analysis frame.
Macros of commands might be created for end-users
with different "views" or objectives (e.g., a scheduling
macro, a marketing macro). To dispatch tasks on-line,
the simulation system and shop floor management
communicate through a task initiation queue (TIQ) and
a task completion queue (TCQ) (Smith et al. 1994).
Monitoring and tracking of tasks can also be
implemented using the TIQrrcQ interface. Structured
query language (SQL) might be used to link with a
variety of database management systems and extract
simulation input (e.g., shop status, process plans) or
forward simulation output (e.g., schedules, performance,
expected completion times).
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Figure 3: General Framework and Functional Elements of an On-Line Simulation Model.
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Figure 4: Software Interfaces to the Simulator
Environment.

5 EXAMPLE OF A CONVENTIONAL ON-LINE
SIMULATOR

Simulator Language

~

To further motivate the general framework discussed in
Section 4, a conventional SIMAN V (Pegden, et al.,
1995) simulator for a simple manufacturing system is
now illustrated. The example system is shown in Figure
5. Six types of jobs arrive from Workcenter A to
Workcenter B. Workcenter B is a small station that
consists of two machines with an input buffer in front of
each. Depending on the part type, jobs can be processed
on Machine 1 only, Machine 2 only, or either of the
resources. Jobs are forwarded to Workcenter C after
processing. The operators at Workcenter B have three
primary objectives. First, they want short lead times to
aid on-time completions of orders at the factory level.
Second, they want low levels of work-in-process (WIP)
to minimize inventory costs. Third, they would like to
forward anticipated completion times of jobs to the
personnel of Workcenter C so that those operators can
plan their operations. To meet their objecti ves, the
operators at Workcenter B confront four major
operating decisions. Three of these decision points are
illustrated as question marks in Figure 5. The first
decision entails incoming jobs with alternative routings,
whereby one of the two machines must be selected.
Machine 2 is the more expensive model and processing
times are always shorter on this resource. The next two
decisions involve the processing sequences on Machine
1 and Machine 2 (i.e., job dispatching from the input
buffers). The last decision involves the work calendars
of Machine 1 and Machine 2, whereby a fixed daily
percentage of downtime is required for each resource for
routine maintenance.

Due to the dynamic nature of the product mix
released from Workcenter A, and the impact of the four
operating decisions, it is considered advantageous to

change the decision strategies of Workcenter B at
certain points in time. Thus, to maintain short lead
times and low WIP, strategies are alternated based on
real-time shop conditions. Table 1 lists the processing
times for the six part types manufactured in Workcenter
B and the alternative strategies (i.e., decision rules) for
machine selection and queue dispatching. These rules
are sensitive to the workstation's dynamics and
considered good candidates for improved performance.
A model of Workcenter B was developed for on-line
planning, scheduling, and control applications at
Workstation B using the SIMAN V simulation language
and environment. The simulator is generic in that
different combinations of the decision rules in Table 1
can be assigned without model editing or recompilation.
This simplifies "what if' experimentation by end-users
unfamiliar with SIMAN or the model's structure. Once
a satisfactory strategy is determined, task lists can be
generated and distributed to the operators in Workcenter
B and predicted completion times of jobs forwarded to
the personnel in Workcenter C. SIMAN code for the
model and experiment files is shown in Figures 6 and 7
respectively. X's mark the functional elements (i.e.,
physical structure (P), control logic (C), task
dispatching (T), simulation input (I), and simulation
output (0» associated with each SIMAN construct. For
example, Line 6 in Figure 6 defines some of the
physical structure of the model as well as task
dispatching.

Figures 6 and 7 illustrate the modeling effort
required to develop a "user-friendly" simulator using
the conventional Arena/SIMAN environment. Though
an attempt was made by the modeler to textually
partition the model and experiment files into their
functional elements, the simulation system does not
explicitly support a modular separation of these
activities. Some general observations will now be made
on the simulator's functional elements:

(1) Physical Structure: Lines 2 through 12 in the
model file and Lines 3 through 6 in the experiment file
define the layout and decision points of the process in
Workcenter B. Within the proposed framework, these
constructs would be defined in the model frame of the
modeling environment.

(2) Task Dispatching: Lines 6, 11, and 52 of the
model file define the VO points for external
communication and Lines 27 through 30 of the
experiment file define the communication protocol.
Within the proposed framework, these constructs would
be defined in the model frame.

(3) Control Logic: Lines 13 through 48 in the
model file and Line 25 in the experiment file define

SQLSIMULATOR ENVffiONMENT

Customized Macros for End-Users

Task Initiation Queue Task Completion Queue

SQL
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Line SIMAN Constructs Comments P C T I 0
I BEGIN,Yes,Yes; Begin Experiment X
2 PROJECT,Example,GRD"No; Model lnfonnation X
3 RESOURCES: I,Machine I,SCHEDULE(Daily); Machine I Resource X X
4 2,Machine2,SCHEDULE(Dai Iy); Machine 2 Resource X X
5 QUEUES: I,Machinel Q,LVF(Priority); Machine I Queue X X
6 2,Machine2Q,LVF(Priority); Machine 2 Queue X X
7 VARiABLES: PartEx~: Emulation Variable X
8 ReadExec: Emulation Variable X
9 Counter: Loop Variable X
10 SUMI: Sums Variable X
II SUM2: Sums Variable X
12 NUM: Part Identifier Variable
13 OpTime(6,2),IO,O,13,O,15,12, Processing Times X
]4 0,6,0,9,8,6:
15 Decisionl: Alternative Machine Var. X
]6 Decision2: Queue I Dispatching Var. X
17 Decision3; Queue 2 Dispatching Var. X
]8 AITRffiUTES: ProcessTime: Processing Time X
]9 OrderNum: Order Identifier X
20 PartNum: Part Type X
21 PartID: Part Identifier X
22 Quantity: Order Quantity X
23 Priority: Queue Rank X
24 Again; Order Variable X
25 EXPRESSIONS: QueueRuJes(2),TNOW,ProcessTime; Queue Ranking Rules X
26 SCHEDULES: Daily,l *480,0*120,1 *480,0*120,1 *480 "Daily" Work Calendar X
27 TASKS: I,ProcessPart,PartExec, TIQ task for processing X
28 "process part %6.Of',PartID,IDENT:
29 2,ReadOrder,ReadExec, TIQ task forreadingOrders X X
30 "Enter Order TGID=%6.Of',IDENT;
31 FILES: I,OrdersFile,"Orders.DB",SEQ"Rewind,",": Orders Database X
32 2,OutFile,"Output.DB",SEQ"Rewind,; Output Database X

33 REPLICATE, 1,0,1800,Yes,Yes; Run Control Infonnation X

Figure 6: Example SIMAN V Experiment File.
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Line SIMAN Constructs Comments P C T I 0
1 BEGIN; Begin Model X

2 ;············Physical Structure················
3 ;Processing at Machine 1
4 Mach IQ QUEUE,Machine IQ; The Machine I Queue X

5 SEIZE,Machine I :NEXT(Outl); Seize Machine 1 X

6 Inl DELAY,ProcessTime,ProcessPart:NEXT(Out2); Process the Part X X

7 In2 RELEASE,Machine 1:DISPOSE; Release Machine 1&Leave X

8 ;Processing at Machine 2
9 Mach2Q QUEUE,Machine2Q; The Machine 2 Queue X

10 SEIZE,Machine2:NEXT(Out3); Seize Machine 2 X

11 In3 DELAY,ProcessTime,ProcessPart: NEXT(Out4); Process the Part X X

12 In4 RELEASE,Machine2 :DISPOSE; Release Machine 2&Leave X

13 ;············Control Logic of System····················
14 ;Alternative Machine Decision (Decision 1)
15 Ent BRANCH,I : Alternative Machine Rules X
16 IF,PartNum.EQ.I.OR.PartNum.EQ.3.0R.Decision I .EQ.I,Mach I: Select Machine 1 In-Buffer X
17 IF,PartNum.EQ.2.0R.PartNum.EQ.4.0R.Decision I.EQ.2,Mach2: Select Machine 2 In-Buffer X
18 IF,Decisionl.EQ.3,SNQ: SNQ Rule to Select X
19 IF,Decision I.EQ.4,STPT; STPT Rule to Select X
20 ;Smallest Number in Queue Rule (SNQ)
21 SNQ BRANCH,I: SNQ Rule X
22 IF,NQ(Machine IQ).EQ.NQ(Machine2Q),STPT: STPT Tiebreaker X
23 IF,NQ(Machine 1Q).GT.NQ(Machine2Q),Mach2: Select Machine 2 In-Buffer X
24 ELSE,MachI; Select Machine 1 In-Buffer X
25 ;Shortest Total Processing Time in Queue Rule (STPT) STPT Rule
26 STPT ASSIGN:Counter;1: X
27 ProcessTime=OpTime(PartNum,I ): Calculate the Total X
28 SUM 1::::ProcessTime; Processing Time in the In-
29 WHILE:Counter.LE.NQ(Machine 1Q): Buffer for Machine 1 X
30 ASSIGN: SUM 1::::SUM 1+AQUE(Machine 1Q,Counter,I): X
31 Counter::::Counter+I;

32 ENDWHILE; X
33 ASSIGN:Counter=I: X
34 ProcessTime=OpTime(PartNum.2): Calculate the Total X
35 SUM2::::ProcessTime; Processing Time in the In-
36 WHILE:Counter.LE.NQ(Machine2Q); Buffer for Machine 2 X
37 ASSIGN: SUM2=SUM2+AQUE(Machine2Q,Counter,I): X
38 Counter=Counter+1;

39 ENDWHILE; X
40 BRANCH,]: X
4] IF,SUM] .GT.SUM2,Mach2: Select Machine 2 In-Buffer X
42 ELSE,Mach] ; Select Machine 1 In-Buffer X
43 ;Machine 1 Queue Dispatching (Decision 2)

44 Mach] ASSIGN: Priority=QueueRules(Decision2): Assign Queue 1 Rank X
45 ProcessTime=OpTime(PartNum,I ):NEXT(Mach] Q); X
46 ;l\tlachine 2 Queue Dispatching (Decision 3)

47 Mach2 ASSIGN: Priority=QueueRules(Decision3): Assign Queue 2 Rank X
48 ProcessTime=OpTime(PartNum,2): NEXT(Mach2Q); X
49 ;···*·*··Simulation Input and Output·*·············*·····

50 ;Reading Orders from Orders Database

5] CREATE,I:,]; Create One Entity X
52 loop 1 DELAY,O,ReadOrder: Send ReadOrder Task X X
53 100p2 READ,OrdersFile:OrderNum,PartNum,Quantity,Again; Read an Order X
54 DUPLICATE: Quantity,ld: Create the Order X
55 BRANCH,]:

Read another Order? X
56 IF,Again.EQ.O,IoopI :ELSE,Ioop2; Assign Part Identifiers X
57 Id ASSIGN: NUM=NUM+l: PartID=NUM: NEXT(Ent); Enter Part into System X
58 ;Generating Output

59 Out I WRITE,OutFile:"S,],%8.3f, %6.Of\n":
Write StartTime of job X

60 TNOW,OrderNum.PartID:NEXT(In I);
at Machine 1

61 Out2 WRITE,OutFile:"F,], %8.3f. %6.Of\n":
Write EndTime of job X

62 TNOW,OrderNum,PartID:NEXT(In2);
at Machine 1

63 Out3 WRITE,OutFile:"S.2. %8.3f, %6.Of\n":
Write StartTirne of job X

64 TNOW,OrderNum,PartID:NEXT(In3 );
at Machine 2

65 Out4 WRITE,OutFile:"F,2,%8.3f. %6.Of\n":
Write EndTime of job X

66 TNOW,OrderNum.PartID:NEXT(In4);
at Machine 2

Figure 7: Example SIMAN V Model File.


