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ABSTRACT

We discuss some basic techniques for modeling de-
pendence between the random variables that are in-
puts to a simulation model, with the main empha-
sis being continuous bivariate distributions that have
flexible marginal distributions and that are readily
extended to higher dimensions. First we examine the
bivariate normal distribution and its advantages and
drawbacks for use in simulation studies. To achieve
a greater variety of distributional shapes while ac-
curately reflecting a desired dependency structure,
we discuss bivariate Johnson distributions. Although
space limitations preclude inclusion in this article, the
oral presentation of this tutorial will also include dis-
cussions of how to use (a) bivariate Bézier distribu-
tions as a means for achieving even greater flexibil-
ity in modeling the marginal distributions, and (b)
ARTA (AutoRegressive To Anything) processes as a
means for generating an entire stochastic process with
specified marginals and a desired covariance struc-
ture.

1 INTRODUCTION

In most introductory discussions of stochastic sim-
ulation input modeling, little consideration is given
to the dependencies between the different random
variables that constitute the inputs to the simula-
tion model. For example, a workpiece arriving at a
manufacturing cell for processing at several worksta-
tions within the cell may exhibit strong dependen-
cies between its processing times at those worksta-
tions. In particular, a workpiece that requires higher-
than-average processing time at its first workstation is
likely to require higher-than-average processing times
at the other workstations visited; and the stochas-
tic dependencies between these processing times can
have a large effect on the overall flow time of the
workpiece in the manufacturing cell. In the simula-
tion model, however, the processing times at different
workstations may be sampled independently simply
because the variate-generation routines in the under-
lying simulation software system are limited to gen-
erating independent samples.

Another example of the importance of accounting
for dependencies between stochastic simulation in-
puts occurs in reliability studies. The times to failure
for several system components may be strongly re-
lated if those components tend to fail simultaneously
because of a common shock to the system. A strik-
ing example of this type of joint failure was the near
crash of an airliner several years ago when all three
engines failed because of an error in maintenance that
caused the loss of oil pressure in all three engines at
the same time.

In this tutorial we present some basic techniques
for modeling dependencies between the inputs to a
stochastic simulation model, but we focus our main
attention on techniques for modeling the joint behav-
ior of a pair of continuous random variables. Refer-
ences are given for the extension of these techniques
to higher dimensions. Section 2 contains the basic
nomenclature that we use to describe the stochastic
behavior of a pair of continuous random variables. In
Section 3 we introduce the bivariate normal distribu-
tion. Bivariate Johnson distributions are discussed
in Section 4. Finally in Section 5 we summarize the
main points of this article.

2 PROPERTIES OF BIVARIATE
DISTRIBUTIONS

Suppose a pair of random variables (X, Y ) constitute
one of the inputs to a stochastic simulation model.
Thus for workpieces arriving at a repair and inspec-
tion facility, X might represent the item’s repair time
and Y might represent the associated inspection time.
We are interested in the effect of the joint behavior
of X and Y on some system performance measure
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of interest, such as the average flow time of work-
pieces through the fac ility—and in fact it is in pre-
cisely such situations that mathematical techniques
frequently fail so that simulation is the analysis tech-
nique of choice. When we want to emphasize the di-
mensionality of the input-modeling task at hand, we
will sometimes write (X1, X2) rather than (X, Y ).

The probabilistic properties of the random vector
(X, Y ) is specified by a joint cumulative distribution
function (c.d.f.)

FX,Y (x, y) = Pr{X ≤ x, Y ≤ y} for all (x, y)

with the following properties:

1. It is a nondecreasing function of each argument
x, y.

2. It is continuous from the right in each argument
so that for all (x, y),

lim
x∗ → x
x∗ > x

FX,Y (x∗, y)

lim
y∗ → y
y∗ > y

FX,Y (x, y∗)


 = FX,Y (x, y).

3. It satisfies the following relationships:

lim
x→ −∞
y →−∞

FX,Y (x, y) = 0,

lim
x→ +∞
y → +∞

FX,Y (x, y) = 1.




4. For any x < x∗ and y < y∗, we have

Pr{x < X ≤ x∗, y < Y ≤ y∗} = FX,Y (x∗, y∗)

−FX,Y (x, y∗) − FX,Y (x∗, y) + FX,Y (x, y)

≥ 0.

Requirements 1–4 emphasize the importance of se-
lecting joint c.d.f.’s with great care.

We assume that the random vector (X, Y ) pos-
sesses a probability density function (p.d.f.) so that
for all x, y,

FX,Y (x, y) =

∫ x
−∞

∫ y
−∞
fX,Y (u, v) dv du.

The existence of such a nonnegative, integrable func-
tion fX,Y (x, y) is sufficient to ensure requirements 1–4
of FX,Y (x, y) above.

Let FX(x) = FX,Y (x,+∞) denote the marginal
c.d.f. ofX with marginal p.d.f. fX(x), marginal mean

µX = E[X] =

∫ ∞
−∞
xfX(x) dx
and marginal variance

σ2X = Var(X) = E[(X − µX)2]

=

∫ +∞
−∞

(x− µX)2fX(x) dx

= E[X2]− µ2X =

∫ +∞
−∞

x2fX(x) dx− µ2X .

The marginal p.d.f. and moments of Y are defined
similarly.

The random variables X and Y are stochastically
independent if and only if their joint c.d.f. can be
factored into the product of the two marginal c.d.f.’s
so that

FX,Y (x, y) = FX(x)FY (y) for all x, y.

In terms of p.d.f.’s, X and Y are independent if and
only if their joint p.d.f. can be factored into the prod-
uct of the two marginal p.d.f.’s.

When X and Y are not stochastically independent,
the most common characterizations of their depen-
dence are (a) the covariance of X and Y ,

Cov(X, Y ) = E[(X − µX)(Y − µY )],

and (b) the product moment correlation of X and Y ,

ρX,Y = corr(X, Y ) = Cov(X, Y )/(σXσY )

= E

[(
X − µX
σX

)(
Y − µY
σY

)]
.

Notice that if X and Y are independent, then
Cov(X, Y ) = 0 and ρX,Y = 0. On the other hand,
zero covariance (or correlation) between X and Y
does not generally imply that X and Y are indepen-
dent.

Whereas the covariance Cov(X, Y ) depends on the
scale (units of measurement) ofX and Y , the correla-
tion coefficient ρX,Y does not since the standardized
random variables (X − µX)/σX and (Y − µY )/σY
each have mean zero and variance one. It can be eas-
ily shown that −1 ≤ ρX,Y ≤ +1. If Y is a linear
function of X so that Y = a + bX with probability
one, then ρX,Y = +1 if b > 0 and ρX,Y = −1 if
b < 0. Thus the correlation ρX,Y is a measure of the
degree of linear dependence between X and Y with
the following properties: (a) it is independent of the
location and scale in which the quantities X and Y
are expressed; (b) it is zero if X and Y are indepen-
dent; (c) it ranges between −1 and +1 when X and
Y are dependent, and its sign reflects the direction
of the linear dependence; and (d) if its magnitude is
1, then a linear relationship between X and Y holds
with probability one. Although there are other useful



                                                                        Modeling Dependencies in Stochastic Simulation Inputs 49
measures of the association or dependence between
two random variables, the product moment correla-
tion coefficient is the most widely used quantity; and
as we shall see, this quantity enters naturally into the
formulation of the bivariate input models discussed
in this article.

3 BIVARIATE NORMAL DISTRIBUTION

The best known and most widely used bivariate dis-
tribution is the bivariate normal distribution. This
state of affairs is partly because of the pervasive im-
pact of the central limit theorem but mainly because
of the lack of many suitable alternative multivariate
distributions. When seeking to model the behavior of
a bivariate random vector (X, Y ), we often have in-
formation about the marginal means µX and µY , the
marginal standard deviations σX and σY , and the
correlation coefficient ρX,Y ; and in this situation it is
sometimes appropriate to assume that (X, Y ) has the
bivariate normal p.d.f.

fX,Y (x, y) =
exp
[
−12Q(x− µX , y− µY )

]
2πσXσY (1− ρ2)1/2

, (1)

where Q(u, v) is the quadratic function

Q(u, v) =
1

1− ρ2
u2

σ2X
− 2ρ

u

σX
·
v

σY
+
v2

σ2Y

)
. (2)

It follows easily from (1) and (2) that the marginal
distribution of X is univariate normal with mean µX
and variance σ2X , so that X ∼ N(µX , σ

2
X) with p.d.f.

fX(x) =
1

(2π)1/2σX
exp

[
−

1

2

(
x− µX
σX

)2 ]
(3)

for all x; and a similar result applies to Y . More-
over, the parameter ρ is the coefficient of correlation
between X and Y :

E

[(
X − µX
σX

)(
Y − µY
σY

)]
= ρ.

Conditional distributions provide another means of
characterizing the dependence between two random
variables. Given X = x, it follows from (1) and (2)
that the conditional p.d.f. of Y is normal

fY |X(y|x) =

exp

{
−

1

2

(y − E[Y |X = x])2

Var[Y |X = x]

}
(2π)1/2σY (1− ρ2)1/2

(4)

with conditional mean

E[Y |X = x] = µY +
ρσY
σX

(x− µX) (5)
and conditional variance

Var[Y |X = x] = σ2Y (1− ρ2) . (6)

Thus Y has a linear regression on X as specified by
(5). Moreover, the marginal variance of Y , σ2Y , con-
sists of two parts: (a) the component ρ2σ2Y that is
“due to” to the variation in X; and (b) the compo-
nent (1 − ρ2)σ2Y that is independent of X and that
represents the variation of Y about the regression
line. Generally it is difficult in simulation applica-
tions to work with the conditional distributions asso-
ciated with a given bivariate distribution. The sim-
plicity of the conditional distributions associated with
the multivariate normal p.d.f. is another reason for
the popularity of this input model.

Figure 1 shows a three-dimensional plot of the nor-
mal density (1) for ρ > 0. Since we can express the
joint p.d.f. (1) as the product of the marginal p.d.f. (3)
and the conditional p.d.f. (4), we see that the curve
formed by the intersection of the bivariate density’s
surface and a plane perpendicular to the x axis (say,
x = a) is a “normal-like” curve, and the area under
this curve is fX(a) rather than one. Moreover, the
mean of this curve lies on the regression line (5); and
every such curve has common variance (6). Clearly
the tallest such “normal-like” curve is the one defined
by the plane x = µX , since this value of x maximizes
the marginal p.d.f. fX(x). By symmetry, planes per-
pendicular to the y axis will intersect the surface in
“normal-like” curves with similar properties.

It is also informative to consider the curves formed
by the intersection of the bivariate normal surface
with planes perpendicular to the (vertical) z axis (say,
z = c). Each such curve has the form

Q(x− µX , y − µY ) = c∗. (7)

It can be shown that (7) defines an ellipse centered
at the point (µX , µY ) with principal axes rotated
through the angle

θ =

{
1
2
tan−1[2ρσXσY /(σ

2
X − σ

2
Y )], if σX 6= σY ,

π/4, if σX = σY .
(8)

From (8) we see that in general the principal axes of
these contour ellipses are not parallel to the regression
of Y on X or to the regression of X on Y as might
be supposed. This should also be clear from Figure
1. For a complete discussion of the bivariate normal
distribution, see Hald (1953)

Fitting a bivariate normal distribution to a random
sample {(Xj , Yj) : j = 1, . . . , n} is straightforward.
The sample mean and variance

X̄ =
1

n

n∑
j=1

Xj and S2X =
1

n− 1

n∑
j=1

(Xj − X̄)2
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Figure 1: Plot of Bivariate Normal Density

estimate µX and σ2X , respectively; and similar results
apply to the estimation of µY and σ2Y . Finally ρ is
estimated by the sample coefficient of correlation

r =
1

n− 1

n∑
j=1

(
Xj − X̄

SX

)(
Yj − Ȳ

SY

)
.

Given estimates of its parameters, the bivariate
normal distribution N2(µ,Σ) with respective mean
vector and covariance matrix

µ =

[
µX
µY

]
and Σ =

[
σ2X ρσXσY
ρσXσY σ2Y

]

can be readily generated by exploiting the results (3)–
(6). In particular, we may generate X from the uni-
variate normal distribution N(µX , σ

2
X); then given

the sampled value X = x, we generate Y from the
univariate normal distribution with mean (5) and
variance (6).

4 JOHNSON SYSTEM OF
DISTRIBUTIONS

4.1 Univariate Johnson Distributions

Starting from a continuous random variable X whose
distribution is unknown and is to be approximated
and subsequently sampled, Johnson (1949a) proposed
a set of four normalizing translations. These transla-
tions have the general form

Z = γ + δ · g

(
X − ξ

λ

)
, (9)

where Z is a standard normal random variate (that
is, Z ∼ N(0, 1)), γ and δ are shape parameters, λ is
a scale parameter, ξ is a location parameter, and g(·)
is a function whose form defines the four distribution
families in the Johnson translation system,

g(y) = (10)


ln(y), for SL (lognormal) family,

ln
[
y +

√
y2 + 1

]
, for SU (unbounded) family,

ln[y/(1− y)] , for SB (bounded) family,

y, for SN normal family.

The translation (9) should approximately trans-
form the continuous random variate X into a stan-
dard normal variate. The process of fitting a Johnson
distribution to sample data involves first selecting a
fitting method and the desired translation function
g(·) and then obtaining estimates of the four param-
eters γ, δ, λ, and ξ. The fitting method utilized in
this paper is moment matching. The Johnson trans-
lation system of distributions has the flexibility to
match any feasible set of sample values for the mean,
variance, skewness, and kurtosis. Additionally, the
skewness and kurtosis uniquely identify the appropri-
ate translation function g(·). As a result, fitting a
data set using moment matching is reduced to the
problem of finding the values of γ, δ, λ, and ξ which
approximately transform X into a standardized nor-
mal variate. Although there are no closed-form ex-
pressions for the parameter estimates based on the
method of moments, these parameter estimates can
be accurately approximated using an iterative proce-
dure of Hill, Hill, and Holder (1976). Moreover, other
methods may used to fit each marginal distribution—
for example, any of the estimation procedures im-
plemented in the FITTR1 software package (Swain,
Venkatraman, and Wilson 1988).

After the data set has been fitted with a Johnson
distribution, variate generation is straightforward.
First, a standardized normal variate Z should be gen-
erated. The corresponding realization of the Johnson
variate X is found by applying to Z the inverse trans-
lation

X = ξ + λ · g−1
(
Z − γ

δ

)
, (11)

where

g−1(z) = (12)


ez, for SL (lognormal) family,(
ez − e−z

)
/2, for SU (unbounded) family,

1/
(
1 + e−z

)
, for SB (bounded) family,

z, for SN (normal) family.
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If X is generated according to (11), then the p.d.f.
of X is given by

fX(x) =
δ

λ(2π)1/2
g′
(
x− ξ

λ

)

× exp

{
−

1

2

[
γ + δ · g

(
x− ξ
λ

)]2}
(13)

for all x ∈ H, where

g′(y) = (14)


1/y, for SL (lognormal) family,

1/
√
y2 + 1, for SU (unbounded) family,

1/[y/(1− y)], for SB (bounded) family,

1, for SN normal family,

and where the support H of the distribution is

H =



[ξ,+∞), for SL (lognormal) family,

(−∞,+∞), for SU (unbounded) family,

[ξ, ξ + λ], for SB (bounded) family,

(−∞,+∞), for SN normal family,

(15)

See Johnson (1949a) or Johnson (1987, pp. 31–33)
for a graphs illustrating the broad diversity of distri-
butional shapes that can achieved with the Johnson
system of univariate probability distributions.

4.2 Bivariate Johnson Distributions

Johnson (1949b) proposed a bivariate distribution
based on the univariate Johnson distributions. The
parameterized model matches the first four moments
for each marginal distribution and then attempts to
approximate the correlation between component vari-
ates. As detailed below, the technique is easily ex-
tended to higher dimensions. Consider a continuous
multivariate random vector X with 2 components,

X = (X1, X2)
T
,

which is to be modeled with some parameterized dis-
tribution. The Johnson bivariate modeling method
determines a normalizing translation such that

Z = γ + δg
[
λ−1 (X − ξ)

]
∼ N2(02,Σ) , (16)

the bivariate normal distribution with null mean vec-
tor 02 and covariance matrix of the form

Σ =

[
1 ρ
ρ 1

]
.

This is accomplished as follows:
1. Identify the transformation

g
[
(y1, y2)

T
]
≡ [g1(y1), g2(y2)]

T

such that the marginal distribution of Xi is ap-
proximated by an appropriate univariate John-
son distribution, where i = 1, 2 and gi(·) is one
of the translation functions in (10)

2. Estimate the matrices of shape parameters,

γ ≡ (γ1, γ2)
T
, δ ≡ diag(δ1, δ2) ,

and the matrices of the respective location and
scale parameters,

ξ ≡ (ξ1, ξ2)
T
, λ ≡ diag(λ1, λ2) ,

using the method of moments on each marginal
distribution separately.

3. Estimate correlation matrix Σ by (a) inserting
each sample value {Xj : j = 1, . . . , n} into the
estimated normalizing translation (16) to obtain
the corresponding sample {Zj : j = 1, . . . , n} of
estimated standard normal random vectors; and
(b) computing the sample correlation matrix of
the {Zj} as the approximate moment-matching
estimator of Σ.

Random vector generation consists of generating Z
from a two-dimensional multivariate normal distribu-
tion N2(02,Σ) and then applying the inverse trans-
lation,

X = ξ + λg−1
[
δ−1(Z− γ)

]
, (17)

using the previously determined parameter vectors
and the vector-valued inverse translation function

g−1
[
(z1, z2)

T
]
≡
[
g−11 (z1), g

−1
2 (z2)

]T
, (18)

where g−1i (·) is defined by (12) for i = 1, 2. This
method will generate random vectors with exactly
the same marginal moments as the original sam-
ple data (at least to the limits of machine accu-
racy); and if each of the empirical marginal distri-
butions of the original sample data is nearly symmet-
ric about its mean, then the intercomponent correla-
tions of the fitted multivariate Johnson distribution
will nearly match the sample correlations of the orig-
inal sample data. However, if some of the empirical
marginal distributions of the original sample data (or
the corresponding underlying theoretical marginals)
possess marked skewness, then the correlation ma-
trix of the fitted multivariate Johnson distribution
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will not match the sample correlation matrix of the
original data set. See Stanfield et al. (1996) for an
alternative approach to fitting bivariate Johnson dis-
tributions.

If the random vector X is generated according to
(17) and (18), then the joint p.d.f. of X has the form

fX1,X2(x1, x2) =
1

2π(1− ρ2)

2∏
i=1

δi
λi
g′i

(
xi − ξ

λi

)
(19)

× exp

[
−

1

2

z21 − 2ρz1z2 + z22
1− ρ2

)]

for all (x1, x2) ∈ H1 × H2, where for the ith coordi-
nate (i = 1, 2), the following objects are defined: Hi
is the appropriate support for Xi as specified in (15);
g′i(xi) is given by the appropriate function in (14) and
zi = γi + δigi[(xi− ξi)/λi] as in (9). For an extensive
set of contour plots of bivariate Johnson p.d.f.’s, see
Johnson (1987). In the oral presentation of this arti-
cle, three-dimensional plots of the selected bivariate
Johnson p.d.f.’s will also be presented to illustrate the
diversity of bivariate dependency structures that can
be achieved with (19).

5 CONCLUSION

The bivariate Johnson distribution family provides
substantially more flexibility than the bivariate nor-
mal distribution, and it is readily extended to higher
dimensions. However, in some multivariate simula-
tion input-modeling applications, even greater flexi-
bility is required in the marginals and in mimicking
a desired covariance structure. See Wagner and Wil-
son (1995, 1996a, 1996b) for an alternative approach
to modeling dependencies in stochastic simulation in-
puts. Moreover, for situations in which it is desir-
able to model the covariance structure of an entire
stochastic process, ARTA processes (AutoRegressive
To Anything) (Cario and Nelson 1996) possess dis-
tinct advantages. These more advanced techniques
will be covered in the oral presentation of this article.
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