
THE IDES FRAMEWORK:
A CASE STUDY IN DEVELOPMENT OF A PARALLEL DISCRETE-EVENT SIMULATION SYSTEM

David M. Nicol

Department of Computer Science
Dartmouth College

Hanover, New Hampshire 03755, U.S.A.

Michael M. Johnson
Ann S. Yoshimura

Sandia National Laboratories
Livermore, California 94550, U.S.A.
Perhaps the main point we wish to convey is that
capability is our main concern, not run-time perform-
ance. Of course, execution time is a consideration, but
we view it as a constraint rather than an objective
function. In the enterprise computing world issues of
portability, maintainability, and conformance to stan-
dards are as important as fast run-time, so much so that it
is acceptable to sacrifice execution speed to provide
these other capabilities.

2 IDES DESIGN

IDES, an Infrastructure for Distributed Enterprise Simu-
lation, is a parallel simulation framework for complex,
large-scale enterprise simulations. IDES was developed
to support Sandia National Laboratories in the study of
issues of importance to national security. Many of these
issues involve the analysis of complex systems. IDES is
a policy driven simulation tool capable of performing
decision directed analysis of complex system models.
The goal of such analysis is to discover the emergent
collective behavior of the system through the interaction
of detailed individual sub-model simulations—the defi-
nition of enterprise simulation.

2.1 System Design Goals

To motivate the IDES system design, consider an exam-
ple domain: simulation of a U.S. Health Maintenance
Organization (HMO). The IDES design was governed
by three goals. The first goal deals with the structure of
the simulation framework to express the systems to be
modeled: link low-level, complex sub-models with high-
level, policy driven resource allocation techniques to
perform cost / benefit trade-off analyses. In the HMO
example, each patient is modeled with complex disease
processes represented by differential equations—includ-
ing risk for coronary artery disease. Medical treatment
policies interact with disease models to affect the health
outcome of patients.
ABSTRACT

This tutorial describes considerations in the design and
development of the IDES parallel simulation system.
IDES is a Java-based parallel/distributed simulation
system designed to support the study of complex large-
scale enterprise systems. Using the IDES system as an
example, we discuss how anticipated model and system
constraints molded our design decisions with respect to
modeling, synchronization, and communication
strategies.

1 INTRODUCTION

The use of parallel computers to execute discrete-event
simulations has been a topic of research interest for
nearly 20 years. Until recently, parallel computers could
be found only in research labs, and application of paral-
lel simulation technology was limited by the simple
problem of lack of access. That has changed. Shared-
memory multiprocessors have become a commodity
product. Fast networks to link personal computers have
become commodity products. It is now possible to order
the pieces of a tremendously powerful distributed / par-
allel system over the Internet one day, receive and
assemble it two days later.

But, while hardware to support large-scale simula-
tions is readily accessible, software (typically) lags
behind. In the enterprise computing world a number of
tools, languages, and standards exist, e.g., Java and its
development environments, CORBA and its implemen-
tations. However, systems to support large-scale dis-
tributed simulations are absent.

In this paper we discuss issues that arose in the
development of a parallel/distributed simulation system
which was intended from the start to support a certain
type of application, on a variety of commercially avail-
able platforms. We anticipate that the lessons we learned
in the course of designing and building this system have
application to other systems as well.

94 Nicol, Johnson, and Yoshimura
The second goal mandates a type of question the
simulation model must be able to answer. Using IDES,
we want to study the use of screening techniques to de-
tect an otherwise invisible system deterioration, itself a
contributor to a catastrophic failure we would like to
prevent. In the HMO example, we would say the early
detection and treatment of coronary artery occlusion may
extend life and saves later costs when heart failure might
otherwise occur.

The third and final goal specifies the portability of
the system: development of simulation models using
IDES should be within the reach of systems analysts, and
support deployment across heterogeneous computing
architectures. IDES runs on single-processor systems,
networks of workstations, and multiprocessor computers
with shared or distributed memory. In addition, IDES
incorporates a web-based interface for distributing
simulation subcomponents across the enterprise network.

In support of these goals we have developed the
IDES framework. IDES is an object-oriented simulation
system capable of supporting complex, massive model,
parallel discrete event simulations transparently across
heterogeneous platforms.

2.2 System Constraints

In support of these design goals, a number of system
constraints had to be overcome. First and foremost,
IDES had to be capable of hosting massive models with
relatively large state. The example HMO model includes
ten million patients and one hundred regional hospitals
and facilities. Enterprise simulations evolve differently
than more traditional parallel simulation models such as
queuing and PCS networks. For example, simulation
entity behavior is not governed by a simple draw on a
random number stream, but through the evaluation of
complex, coupled state-evolution equations. Hence, the
difficulty of extracting lookahead discourages the use of
a purely conservative protocol.

Since the data state of each component is large, we
use multiple machines to acquire the memory needed.
While a conservative approach to synchronization could
use less memory than an optimistic approach, lack of
lookahead limits the effectiveness of conservative syn-
chronization. Consequently very large state coupled with
lack of lookahead motivates use of Breathing Time
Buckets (BTB) developed by Steinman (1992) to
constrain optimism. Furthermore, sheer model size and
portability concerns motivated investigation of impact of
architecture on performance.

The state of simulation entities is computationally
complex. In the HMO example, evaluation of complex
disease models is computationally expensive.
Parallelism is evident with a large population.
3 SYNCHRONIZATION

Synchronization is generally viewed as the key source of
difficulty when executing discrete-event simulations.
Conservative synchronization methods ensure that every
bit of computation executed contributes directly to the
final simulation state; optimistic methods support specu-
lative computing where some computations may
ultimately be undone. The task of building a parallel
simulation framework is understandably easier with a
conservative approach. However, there is ample
evidence that reasonable performance can be achieved
under conservative synchronization only if there is easily
extracted lookahead in the simulation model. This
simply means that without a great deal of effort it is pos-
sible to examine the state of a sub-model (the term we’ll
use to identify that portion of the simulation model that is
cohesive in the sense that all simulation work associated
with a sub-model will be done by the same CPU) and
find a lower bound on the time when next that sub-model
performs some action that affects the state of another
sub-model. Dissemination of lookahead provides the
slack needed between processors that permits them to
make forward progress without concern for so-called
straggler messages (messages with time-stamps less than
the recipients local simulation clock).

Our initial intent was to use a synchronization pro-
tocol based on YAWNS by Nicol (1989, 1993).
YAWNS is conservative, and when suitable lookahead is
available, is provably scaleable. However, as we studied
the class of model problems we began to see that
lookahead would not be easy to extract without requiring
the IDES user to provide more information about the
model than we thought the user would typically care to
provide. Consider again the HMO model. A patient’s
risk profile with regards to, say, heart disease, is
dependent upon a number of risk factors including life-
style choices, family history, and known health problems
within ones family. A differential equation describes the
probability distribution of the time of next heart attack,
as a function of those risk factors. If any of those risk
factors were to change, a heavy-weight computation
would be required to recompute the probability distribu-
tion. The sort of lower-bound calculation needed to
compute lookahead would have to identify the worst-case
combination of risk factor values and assume they
simultaneously changed to this worst case scenario, and
then compute a worst-case time-to-heart-attack
distribution. The only alternative is to require the
modeler to provide this sort of worst case information (at
the risk of the modeler being wrong!). We eschewed
those constraints in favor of a limited form of optimism
that constrains the sort of large-scale memory consump-
tion that general Time Warp simulation is capable of
requiring.

The IDES Framework: A Case Study in Development of a Parallel Simulation System 95
We next considered the Breathing Time Buckets
(BTB) synchronization approach, as it is essentially an
optimistic version of YAWNS. While being optimistic,
it ensures that messages between sub-models are
“correct” in the sense that they will not be canceled. In
its simplest form, BTB works as follows. Simulation
objects synchronize at points in simulation time (the de-
termination of which is the point of the protocol). At a
synchronization point, messages are exchanged between
sub-models; as these messages are correct, they can be
incorporated into their recipients’ event lists. Next a sub-
model executes events on its event list in time-stamp
order, performing state-saving. As messages to other
sub-models are generated, these are buffered but their so-
called receive-times are noted, the times when the mes-
sage affects the recipient (as opposed to the time when
the sender sends it, which may be different). A sub-
model tracks the minimum receive-time of any message
it generated but not yet delivered. At the point when the
time of next event is greater than or equal to the mini-
mum such receive-time, the sub-model has reached its
local event horizon. BTB defines the next synchroniza-
tion point as the minimum local event horizon among all
sub-models, this called the global event horizon. The
global event horizon essentially establishes the least next
time when an as-yet-unknown message can arrive at a
sub-model and change its state. Therefore, all computa-
tion up to the global event horizon is known to be
“good” in that even though computed speculatively, it
did not depend upon a message from another sub-model.
Of course, a sub-model may have been advanced beyond
the global event horizon, and so (at least conceptually)
is rolled back to the global event horizon.

A naïve way of determining the global event hori-
zon is to have each sub-model execute all the way until
reaching its local event horizon, and then engage in a
global minimum-reduction operation to identify the least
such. This would actually maximize the amount of
memory used for state-saving in a BTB approach, in that
each sub-model would be executed as far as could be
possible, saving state the entire way. Clearly, to reduce
state-saving costs one needs to disseminate local event
horizons as they are discovered. Towards this end we
developed an algorithm—the preemptive min-
reduction—to attempt to identify and distribute the
global event horizon quickly.

In a normal reduction a processor offers a value to
the reduction operator and then blocks until all proces-
sors have offered values and the reduction is performed.
A processor interacts with a preemptive min-reduction
somewhat differently. Each processor has a “working
minimum” in the case of BTB the least observed receive
time on generated messages. As the computation
progresses, the working minimum changes in a
monotonically non-decreasing fashion.
The reduction framework in a processor maintains a
“partially reduced’’ value, initially infinity, to reflect the
minimum value reported to that processor in the course
of the preemptive-reduction. Periodically (say, after
each event) a processor compares its time of next event
with the partially reduced value. If the former value is
smaller, the processor’s progress has been preempted by
knowledge of the existence of a local event horizon,
somewhere, that is smaller than the processor’s own. It
then engages in the reduction logic, offering the partially
reduced value as its own.

It blocks until the reduction is completed and the
global event horizon is identified. Alternatively, if a
processor reaches its local event horizon without being
preempted, it simply engages in the min-reduction. All
that is needed to implement this algorithm is user code
access to the partially reduced value that is typically in
tree-based reduction algorithms. We have based our
implementation on the non-committal barrier synchroni-
zation by Nicol (1995).

4 IDES Modeling

There are a large number of factors that potentially affect
performance of the IDES system. We thought it prudent,
prior to building IDES, to anticipate some of the per-
formance considerations, by first building an analytic
model of IDES and study its behavior. We have already
reported on that work by Nicol, Johnson, Yoshimura,
and Goldsby (1997), we only sketch the approach and
results here.

The model recognizes that the key elements gov-
erning a sub-model’s behavior with respect to synchroni-
zation are (1) its time of next event, and (2) its minimum
known receive time on generated messages. A sub-
model’s state is described by a pair of real numbers,
recording these two elements. Stochastic assumptions
are made about changes in those two elements as events
are processed. A sub-model reaches its local event hori-
zon when its time-of-next event component dominates
its receive-time component. One such model is
advanced for every sub-model in the system; additional
assumptions about communication delay and construc-
tion of reduction trees model the inclusion of a
preemptive min-reduction calculation. The end result of
the model is a probability distribution of the time
required to execute one BTB window. Solution of the
model is computational rather than closed form.

In order to include further detail (and temporarily
avoid the effort of building a numerically stable solver),
we developed a simulation of this model. Performance
studies using the simulation revealed the sensitivity of
performance to the delay through a network interface that
is shared by all processors in an SMP. This result has
immediate bearing on the issue of hardware

96 Nicol, Johnson, and Yoshimura
acquisition—ironically, the systems most prone to having
the network interface be a performance bottleneck are
the high end larger scale (and more costly) SMP servers.
Actual studies are needed to assess whether the advan-
tage of local communication between sub-models in the
same SMP is enjoyed. Another point of interest was
that perfect load balance is difficult if not impossible to
achieve when the workload is stochastically driven. The
inherent variance in the workload behavior induces a
certain level of imbalance. An important conclusion to
draw from this study is that complex load-balancing
schemes are unlikely to be significantly more effective
than simple schemes—a conclusion that has obvious
bearing on IDES system design. A final lesson we
learned from the simulation study was that a performance
optimization we considered with regards to handling
communication was usually quite effective, and should
hence be considered for inclusion in the IDES system.

We believe that the effort we applied to developing
analytic and simulation models of IDES helped us to
understand much more deeply how such a system must
operate, and the sort of performance sensitivities we
could expect from the system once built. Armed with
this confidence, we proceeded to implementation.

5 IDES IMPLEMENTATION

The IDES design has been implemented separately in
both C++ and Java. This paper deals exclusively with
the Java implementation.

5.1 Class Structure

The two main simulation classes are Entity and Message.
All simulation objects are represented by the Entity class
which encodes individual state and behavior. Entities
communicate with one another by sending Messages
which contain routing information as well as message
content.

Sub-Model

Router
Event
Queue

Sub-Model

Router
Event
Queue

Entity
Entity

Entity
Entity

EntityEntity

Figure 1: IDES Model Decomposition

Two additional base classes complete the IDES
framework: EventQueue and Router. In IDES, a simu-
lation is decomposed into a number of sub-models, each
consisting of a subset of all simulation Entities (Figure
1). Each sub-model contains an EventQueue and a
Router.

protected double wakeup (double time) {

// CHECKPOINT THE STATE OF THE OBJECT, AND
// UPDATE ENTITY TO THE CURRENT TIME.
checkpoint(time);
update(time);

// PERFORM INTERNAL ENTITY EVENTS.
performInternalEvent();

// RESPOND TO EXTERNAL MESSAGES.
while(!messages_.isEmpty())
 performMessage(messages_.dequeue());

// DETERMINE TIME OF NEXT WAKEUP.
return forecast();

}

Figure 2: Entity Event Processing Routine

Execution of simulation events for Entities on the
sub-model is controlled by the sub-model’s EventQueue.
The role of the EventQueue is simply to hand the thread
of execution control to the appropriate Entity at the ap-
propriate simulation time, by invoking the Entity’s
wakeup routine (Figure 2). In this routine, the Entity
executes the events that should occur at that time, in-
cluding response to and sending of Messages if required.
It then gives execution control back to the EventQueue,
having forecast (Figure 3) the time of next wakeup.
Hence each entry in the EventQueue consists of an Entity
reference and the simulation time at which the Entity
should be “woken up.”

protected double forecast() {

// CALCULATE EARLIEST INTERNAL EVENT.
wakeupTime_ = forecastInternal();

// CALC. EARLIEST MESSAGE RECEIVE TIME.
if (!(messages_.isEmpty())) {

double messageTime =
messages_.headKey();

if (messageTime < wakeupTime_)
wakeupTime_ = messageTime;

}

// RETURN EARLIEST TIME. THE ENTITY WILL
// BE WAKEN UP AT THIS TIME.
return wakeupTime_;

}

Figure 3: Entity Forecast

The Router is responsible for routing and filtering all
Messages that are sent to and from the Entities on the
Router’s sub-model. The Router is also responsible for
establishing synchronization windows with other Routers
in the simulation, according to the algorithm discussed
above.

The IDES Framework: A Case Study in Development of a Parallel Simulation System 97
5.2 Decomposition Mechanism

Entities are arranged in a hierarchy in which parent
Entities are responsible for instantiating child Entities.
We refer to the highest level parents as the top-level
Entities.

For a particular simulation run, each top-level Entity
must be assigned to a specific sub-model. We implement
this mapping as a matrix of size (number of top-level
Entities) x (maximum number of sub-models allowed).
For any top-level Entity, given the number of sub-models
in the simulation, the corresponding matrix entry identi-
fies the assigned sub-model.

Invocation of the IDES executable code instantiates a
single sub-model to which two arguments must be
passed: (1) the total number of sub-models in the simu-
lation and (2) the unique identifier for this particular sub-
model. Each sub-model will then instantiate only the
top-level Entities that have been assigned to it, based on
the matrix described above.

Figure 4: IDES Code Distribution Server

It should be noted that the Entity to sub-model as-
signment is an initial (simulation start-up) assignment
only. We do not restrict Entities from migrating from
one sub-model to another during a simulation run.

5.3 Code Distribution

The IDES distribution mechanism is also implemented in
Java. At start up, the IDES Server is running on every
machine that may be used as a host for the simulation
run. The Server’s user interface (Figure 4) allows the
owner of the machine to control the use of the machine
by remote IDES Clients. The IDES Client (Figure 5) is
run by the simulation owner (the “user”). For a simula-
tion run, the user indicates (1) the directory in which the
simulation executable code resides, and (2) the machines
on which the simulation is to be run. As each machine is
selected, the IDES Client contacts it to ensure that the
IDES Server is running there, ready to accept transmis-
sion of the simulation code.
Figure 5: IDES Code Distribution Client

Upon user command, the IDES Client transmits to
each participating Server the following data: (1) the
simulation executable code, (2) the identification number
for the sub-model to be instantiated, and (3) the total
number of sub-models in the simulation. The Server
then invokes the executable on its machine, creating the
proper sub-model. The Client also sends to each Server
the addresses and sub-model identification numbers for
all other participating machines. This information is
passed to the executing sub-model whose Router then
uses it to establish a communication link to the Router in
each of the other sub-models. The simulation is now
ready to run.

5.4 State Saving Mechanism

Within BTB, individual simulation sub-models are al-
lowed to optimistically surge forward, speculatively exe-
cuting events on their events lists in time-stamp order.
Since receipt of a message with receive time less than the
current event execution time necessitates a state rollback,
sub-models must perform state saving.

Driven by the need to support massive models and
thus limit the amount of saved state, we first considered
the naïve approach of state saving only once at the
window boundary. The simulation would then be
allowed to process forward speculatively until detection
of the event horizon. With the event horizon determined,
all simulation sub-models would be rolled back to the
beginning of the window and run forward again to stop at
the event horizon. While this scheme minimizes the
amount of saved state, it necessitates execution of the
simulation twice.

Next we considered going to an incremental mecha-
nism whereby individual state variables are saved as they
are changed. However, implementing this scheme in

98 Nicol, Johnson, and Yoshimura
Java appeared complicated and overly taxing on the user
of the system. In addition, experiments showed that due
to the coupling of state variables in the objects of interest
to IDES, execution of a typical event touched most state
variables anyway.

abstract public class Entity extends Persistent
implements Serializable
{ …}

Figure 6: Entity Class Declaration

In the face of these considerations, we implemented
what is commonly known as “copy’’ state-saving—see
Franks, Gomes, Unger, and Cleary (1997) for a discus-
sion of various state-saving policies. Immediately prior
to receipt of a message or processing of an event, the
system checkpoints the mutable state of the affected
entity. The state saving mechanism relies on the Java
implementation of object serialization. All IDES object
classes are required to derive from Entity (Figure 6),
which itself derives from Persistent.

The class Persistent contains the routines for
checkpointing and rollback of individual Entity state.
This is accomplished through an internal ordering of
ByteArrayOutputStreams serialized through an
ObjectOutputStream. In the IDES object class hierarchy,
all classes from the Entity down are required to
implement Serializable (Figure 7). The one drawback to
this mechanism is the requirement that object images
must be restored to a new address. In most cases, the
user wants to update the state of an existing object with
only those variables that could possibly change since the
last checkpoint, and not replace all Entity state values
completely. In order to accomplish this, our implemen-
tation relies on the Serializable mechanism to restore the
state of transient (or non-persistent) variables into a new
address space. Then a Persistent routine, clone, copies
the contents of the newly restored object image into the
original image.

public class
Car extends Entity implements Serializable {

public Car (Router router,
String name,
int dealerId,
double maintenanceInterval,
double messageDelay) { }

…}

Figure 7: Car Class Declaration

5.5 Example Simulation Problem

Our example problem domain is an automobile franchise
comprised of Dealers, Owners, and their Cars.

Dealers sell and service Cars. They also on occasion
will issue recalls on certain defective Cars they have
sold. Services on Cars include both routine maintenance
work and recall repairs.
Owners purchase Cars from Dealers. They may re-
quest service from any Dealer, but recalls will always be
received from the original (selling) Dealer.

Cars deteriorate with time (Figure 8). Routine main-
tenance slows the rate of deterioration, but cannot
prevent it completely. Defects in Cars can be corrected
by recall repair work. The useful life of a Car is affected
by the presence of defects and the service work received
over the life of the Car. When a Car dies, its Owner pur-
chases a new Car from the same Dealer from which the
first Car was purchased.

"L
ife

 U
ni

ts
"

Time

Maintenance

Recall Repair

Maintenance

Maintenance

Maintenance

Figure 8: Car Deterioration Model

The following code sample (Figure 9) is from the
Dealer class, in which a Dealer performs a recall event.

private void performInternalEvent () {
if (time_ == recallTime_) {

// Send message to car to be recalled.
sendMessage(new Message(myId_,

recallCarId_,
currentTime_,
(currentTime_ + 0.5),
Message.RECALL));

}
}

Figure 9: Dealer Sending a Message
The sendMessage routine is used to send a Message to
the Car to be recalled. In creating the Message, the
sending and receiving Entity identifications, the send and
receive times, and the type of the Message must be
specified.

private void performMessage (Message msg) {
 if (msg.type() == Message.RECALL) {

// PERFORM RECALL.
lifeUnits_ += .1;
if (lifeUnits_ > 1.0)

lifeUnits_ = 1.0;
}

}

Figure 10: Car Recall Message Handler

Response to a received Message is done in
performMessage (Figure 10). The example above is for
a Car that has received a recall Message.

The IDES Framework: A Case Study in Development of a Parallel Simulation System 99
After having decoded the recall message, the Car
performs the recall—here simply an adjustment of the
Car’s life units—and then returns immediately to the
event processing loop. Next the Entity must determine
the future wakeup time based on pending internal events
and messages—a function performed by forecast. Since
the recall affected the life units of the Car, and hence the
internal state of the Entity, the forecast routine must
determine when the next internal Entity event will occur.

protected double forecastInternal() {

// EVALUATE DIFFERENTIAL EQUATIONS
// TO DETERMINE PREDICTED DEATH TIME.
double nextTime = calcDeathTime();

// SCHEDULE MAINTENACE IF PRIOR TO DEATH.
if (nextTime > maintenanceTime_)

nextTime = maintenanceTime_;
return nextTime;

}

Figure 11: Car Forecast Internal Event

Forecast internal event (Figure 11) calculates the
time of next internal event for an Entity. In the simple
example given for a Car, the only possible two internal
events are the demise of the Car, or a request for mainte-
nance. Once the minimum has been determined, the
forecast routine (Figure 3) then decides if the next
internal event, or receipt of a pending message, will re-
sult in the next Entity wakeup.

6 SUMMARY

The IDES system being developed at Sandia National
Laboratories is a parallel simulation framework for sup-
porting the study of complex large-scale enterprise
systems. This paper chronicles the development of IDES
and how its goals of capability and portability affected
our design decisions.

ACKNOWLEDGMENTS

This work was supported in part by the United States
Department of Energy under Contract DE-AC04-
94AL85000. Nicol’s work was supported in part by NSF
grant CCR-9625894 and DARPA contract N66001-96-
C-8530.

REFERENCES

Franks, S., F. Gomes, B. Unger, and J. Cleary. 1997.
State saving for interactive optimistic simulation. In
Proceedings of the 11th Workshop on Parallel and
Distributed Simulation, 72-79. IEEE Computer
Society Press.
Nicol, D.M. 1993. The cost of conservative synchro-
nization in parallel discrete-event simulations.
Journal of the ACM 40(2): 304-333.

Nicol, D.M. 1995. Non-committal barrier synchroni-
zation. Parallel Computing (21): 529-549.

Nicol, D.M., M.M. Johnson, A.S. Yoshimura, and M.E.
Goldsby. 1997. Performance modeling of the IDES
framework. In Proceedings of the 11th Workshop on
Parallel and Distributed Simulation, 38-45. IEEE
Computer Society Press.

Nicol, D.M., C. Michael, P.M. Inouye. 1989. Efficient
aggregation of multiple LPs in distributed memory
parallel simulations. In Proceedings of the 1989
Winter Simulation Conference,. 680-685.

Steinman J. 1992. SPEEDES: A multiple synchroniza-
tion environment for parallel discrete-event simula-
tion. In International Journal in Computer Simula-
tion (2): 251-286.

AUTHOR BIOGRAPHIES

DAVID M. NICOL received the Ph.D. in Computer
Science from the University of Virginia in 1985 and is
presently an Associate Professor of Computer Science at
Dartmouth College. He has published extensively on
topics in performance analysis, parallel computing, and
parallel discrete-event simulation. He is on the editorial
boards of the INFORMS Journal on Computing, and the
ACM Trans. on Modeling and Computer Simulation.

ANN S. YOSHIMURA received the Ph.D. in Chemical
Engineering from Princeton University in 1988 and is
presently a Senior Member of the Technical Staff at
Sandia National Laboratories. Her research interests
include parallel discrete event simulation and
combinatorial algorithms.

MICHAEL M. JOHNSON is a Senior Member of the
Technical Staff at Sandia National Laboratories /
California. He received the M.Sc. degree in Computer
Engineering from the University of California, San
Diego in 1991. His research interests include parallel
simulation, computer graphics, and embedded systems
design.

	THE IDES FRAMEWORK: A CASE STUDY IN DEVELOPMENT OF A PARALLEL DISCRETE-EVENT SIMULATION SYSTEM
	ABSTRACT
	1 INTRODUCTION
	2 IDES DESIGN
	2.1 System Design Goals
	2.2 System Constraints

	3 SYNCHRONIZATION
	4 IDES Modeling
	5 IDES IMPLEMENTATION
	5.1 Class Structure
	5.2 Decomposition Mechanism
	5.3 Code Distribution
	5.4 State Saving Mechanism
	5.5 Example Simulation Problem

	6 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 93
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

