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ABSTRACT

Simulation optimization can be defined as the process of
finding the best input variable values from among all
possibilities without explicitly evaluating each
possibility. The objective of simulation optimization is to
minimize the resources spent while maximizing the
information obtained in a simulation experiment. The
purpose of this paper is to review the area of simulation
optimization. A critical review of the methods employed
and applications developed in this relatively new area are
presented and notable successes are highlighted.
Simulation optimization software tools are discussed.
The intended audience is simulation practitioners and
theoreticians as well as beginners in the field of
simulation.

1 INTRODUCTION

When the mathematical model of a system is studied
using simulation, it is called a simulation model. System
behavior at specific values of input variables is evaluated
by running the simulation model for a fixed period of
time. A simulation experiment can be defined as a test or
a series of tests in which meaningful changes are made to
the input variables of a simulation model so that we may
observe and identify the reasons for changes in the
output variable(s). When the number of input variables is
large and the simulation model is complex, the
simulation experiment may become computationally
prohibitive. Besides the high computational cost, an even
higher cost is incurred when sub-optimal input variable
values are selected. The process of finding the best input
variable values from among all possibilities without
explicitly evaluating each possibility is simulation
optimization. The objective of simulation optimization is
minimizing the resources spent while maximizing the
information obtained in a simulation experiment.

Consider an intersection with four-way stop signs.
Suppose that it has been determined to be a bottleneck
for traffic during rush hours and a decision has been
made to replace it with traffic lights in all four directions.
Now, the problem is to determine the optimal green-
times in all directions in order to ensure the least wait-
time for cars arriving from all directions. The green-
times must allow for the flow of traffic in all the pre-
specified directions. Given the rates at which cars arrive
from every direction, and picking reasonable green-time
values, a simulation model of the intersection can be
developed and run to determine the wait-time statistics.
Running of this simulation model can only provide the
answer to a “what if” question (e.g. What if the green-
time in all four directions is 2 minutes ... what is the
resulting wait-time for cars arriving at the intersection?).
But how do we find the optimal values for the various
green-times? This is an instance of a simulation
optimization problem.

A general simulation model comprises n input
variables )x,...,x,x( n21  and m output variables

)y,...,y,y(or))(f),...,(f),(f( m21m21 xxx  (Figure 1).

Simulation optimization entails finding optimal settings

of the input variables, i.e. values of n21 x,...,x,x , which

optimize the output variable(s). Such problems arise
frequently in engineering, for instance, in process design,
in industrial experimentation, in design optimization, and
in reliability optimization. This is the problem we will
address in this paper. A simulation optimization model is
displayed in Figure 2. The output of a simulation model
is used by an optimization strategy to provide feedback
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on progress of the search for the optimal solution. This in
turn guides further input to the simulation model.

Simulation optimization is an area that has attracted
the attention of many researchers. The six major
categories of simulation optimization methods are
displayed in Figure 3. Section 2 contains brief
descriptions of frequently used simulation optimization
methods. Section 3 enumerates the reported applications
of simulation optimization. Section 4 lists computer
software that integrates simulation and optimization.
Section 5 entails the closing remarks. The techniques and
applications presented here are neither mutually
exclusive nor exhaustive. All of the techniques discussed
in this paper have been previously investigated in
simulation literature. Our main contribution here is to
provide knowledge about the area of simulation
optimization in one paper, with an extensive reference
list pointing to detailed treatment of specific techniques.

2 SIMULATION OPTIMIZATION METHODS

2.1 Gradient Based Search Methods

Methods in this category estimate the response function
gradient )f(∇  to assess the shape of the objective

function and employ deterministic mathematical
programming techniques. Frequently used gradient
estimation methods are described below.

2.1.1  Finite Differences
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Figure 2: A Simulation Optimization Model
Partial derivatives of the output variable f(x) are
estimated by the following:
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To estimate the gradient at a specific value of x, at least
n+1 configurations of the simulation model must be run.
To obtain a more reliable estimate of ∇f  there may be a
need for multiple observations for each partial
derivative, further increasing the already high
computational cost. Finite differences is the crudest
method of estimating the gradient (Azadivar, 1992). For
a comprehensive discussion on the convergence
properties of, and bias and variability of gradient
estimators obtained with finite differences, likelihood
ratios (Section 2.1.2 below), and perturbation analysis
(Section 2.1.3 below), see Glynn (1989b).

2.1.2  Likelihood Ratios (LR)

In the likelihood ratio method, also called the score
function, the gradient of the expected value of an output
variable with respect to an input variable is expressed as
the expected value of a function of a) input parameters,
and b) simulation parameters e.g. simulation run length,
output variable value etc. For instance, for a Poisson
process with rate λ, if NT is the number of events in time
interval (0, T), and y is an output variable, then
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The right hand side of the equation above can be
computed by keeping track of a statistic during a
simulation run. Better estimates can be obtained by  
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Figure 3: Simulation Optimization Methods

conducting multiple simulation runs. This method is
suitable for transient and regenerative simulation
optimization problems. For a regenerative process,
steady state value of an output variable can be expressed
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as a ratio of two expected values - the likelihood ratio.
The construction of a likelihood ratio that has desirable
computational and variability characteristics is an
important issue in the development of LR gradient
estimators (Glynn, 1989b). LR methods are discussed in
Glynn (1989a), and Reiman and Weiss (1986).

2.1.3 Perturbation Analysis (PA)

In infinitesimal perturbation analysis (IPA) all partial
gradients of an objective function are estimated from a
single simulation run. The idea is that in a system, if an
input variable is perturbed by an infinitesimal amount,
the sensitivity of the output variable to the parameter can
be estimated by tracing its pattern of propagation. This
will be a function of the fraction of propagations that die
before having a significant effect on the response of
interest. IPA assumes that an infinitesimal perturbation
in an input variable does not affect the sequence of
events but only makes their occurrence times slide
smoothly. The fact that all derivatives can be derived
from a single simulation run, represents a significant
advantage in terms of computational efficiency. On the
other hand, the estimators derived using IPA are often
biased and inconsistent. According to Glynn (1989b),
when both IPA and LR methods apply to a given
problem, the IPA gradient estimator is more efficient.
Other PA methods include smoothed perturbation
analysis (SPA), and IPA variants. In a relatively short
time since the introduction of PA to the simulation
optimization field, a significant volume of work on this
topic has been reported (see, e.g., Suri (1983), and Ho
and Cao (1991)). For a comparative study of finite
differences, LR and IPA, see L’Ecuyer (1991).

2.1.4 Frequency Domain Method (FDM)

A frequency domain experiment is one in which selected
input parameters are oscillated sinusoidally at different
frequencies during one long simulation run. The output
variable values are subjected to spectral (Fourier)
analysis, i.e. regressed against sinusoids at the input
driving frequencies (Morrice and Schruben, 1989). If the
output variable is sensitive to an input parameter, the
sinusoidal oscillation of that parameter should induce
corresponding (amplified) oscillations in the response.

Frequency domain experiments involve addressing
three questions: how does one determine the unit of the
experimental or oscillation index, how does one select
the driving frequencies, and how does one set the
oscillation amplitudes? These questions have been
addressed in Jacobson et al. (1988), and Jacobson
(1989). Frequency domain methodology was first
introduced as a screening tool for continuous input
factors in discrete-event simulations in Schruben and
Cogliano (1987). Jacobson and Schruben (1988)
extended the approach to gradient direction estimation.

2.2 Stochastic Optimization

Stochastic optimization is the problem of finding a local
optimum for an objective function whose values are not
known analytically but can be estimated or measured.
Classical stochastic optimization algorithms are iterative
schemes based on gradient estimation. Proposed in the
early 1950s, Robbins-Monro and Kiefer-Wolfowitz are
the two most commonly used algorithms for
unconstrained stochastic optimization. These algorithms
converge extremely slowly when the objective function
is flat and often diverge when the objective function is
steep. Additional difficulties include absence of good
stopping rules and handling constraints. More recently,
Andradottir (1990) proposed a stochastic optimization
algorithm that converges under more general
assumptions than these classical algorithms. Leung and
Suri (1990) reported better results with the Robbins-
Monro algorithm when applied in a finite-time single-run
optimization algorithm than when applied in a
conventional way.

In the stochastic counterpart method (also known as
sample path optimization) a relatively large sample is
generated and the expected value function is
approximated by the corresponding average function
(Shapiro (1996), Gurkan et al. (1994)). The average
function is then optimized by using a deterministic non-
linear programming (LP) method. This allows statistical
inference to be incorporated into the optimization
algorithm which addresses most of the difficulties in
stochastic optimization and increases the efficiency of
the method.

2.3 Response Surface Methodology (RSM)

Response surface methodology is a procedure for fitting
a series of regression models to the output variable of a
simulation model (by evaluating it at several input
variable values) and optimizing the resulting regression
function. The process starts with a first order regression
function and the steepest ascent/descent search method.
After reaching the vicinity of the optimum, higher degree
regression functions are employed. Applications of RSM
in simulation optimization are described in Biles (1974)
and Daugherty and Turnquist (1980). Using a criterion
which considers the bias as well as the variance of the
simulation response variable, Donohue et al. (1990)
developed optimal designs in common second-order
design classes including central composite, Box-
Behnken, and full-factorial. In general, RSM requires a
smaller number of simulation experiments relative to
many gradient based methods.
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2.4 Heuristic Methods

Heuristic methods discussed below represent the latest
developments in the field of direct search methods
(requiring only function values) that are frequently used
for simulation optimization. Many of these techniques
balance exploration with exploitation thereby resulting in
efficient global search strategies.

2.4.1 Genetic Algorithms (GA)

A genetic algorithm is a search strategy that employs
random choice to guide a highly exploitative search,
striking a balance between exploration of the feasible
domain and exploitation of “good” solutions (Holland,
1992). This strategy is analogous to biological evolution.
From a biological perspective, it is conjectured that an
organism’s structure and its ability to survive in its
environment (“fitness”), are determined by its DNA. An
offspring, which is a combination of both parents’ DNA,
inherits traits from both parents and other traits that the
parents may not have, due to recombination. These traits
may increase an offspring’s fitness, yielding a higher
probability of surviving more frequently and passing the
traits on to the next generation. Over time, the average
fitness of the population improves.

In GA terms, the DNA of a member of a population
is represented as a string where each position in the
string may take on a finite set of values. Each position in
the string represents a variable from the system of
interest, e.g. a string of five input switches on a black
box device where each switch may take the value 1
(switch is on) or 0 (switch is off); the string 11100
indicates the first three switches to be on and the last two
switches to be off. The fitness of a member of a
population is determined by an objective function.

Members of a population are subjected to operators
in order to create offspring. Commonly used operators
include selection, reproduction, crossover, and mutation
(see Goldberg (1989) for further details). Several
generations may have to be evaluated before significant
improvement in the objective function is seen. GA were
developed by John Holland and his team at the
University of Michigan. GA are noted for robustness in
searching complex spaces and are best suited for
combinatorial problems.

2.4.2 Evolutionary Strategies (ES)

Similar to GA, evolutionary strategies (ES) are
algorithms that imitate the principles of natural evolution
as a method to solve parameter optimization problems.
Rechenberg is credited for introducing ES during the
sixties at the Technical University of Berlin, but
Schwefel made the first attempt towards extending this
strategy in order to solve discrete parameter optimization
problems (Schwefel, 1995).

The first algorithm employed was a simple
mutation-selection scheme called two membered ES, or
(1+1)-ES. This scheme consisted of one parent
producing one offspring by adding standard normal
random variates. The better of the parent and the
offspring becomes the parent for the next generation.
The termination criteria include number of generations,
elapsed CPU time, absolute or relative progress per
generation, etc. The multimembered ES, or (µ+1)-ES,
involves two parents, randomly selected from the current
population of µ > 1 parents, producing one offspring
(Back et al., 1991). Extensions of the (µ+1)-ES scheme
include (µ+λ)-ES and (µ,λ)-ES. In a (µ+λ)-ES, µ parents
produce λ offspring followed by removal of λ least fit
individuals (parents and offspring) to restore the
population size to µ. A (µ,λ)-ES is comparable to the
(µ+λ)-ES, however, only the offspring undergo
selection. Back et al. (1991) also elaborated on other
complex versions of ES, like correlated mutations, along
with experimental comparisons of ES with popular direct
search methods. Maria (1995) used a hybrid GA-ES
algorithm to solve multimodal continuous optimization
problems.

2.4.3 Simulated Annealing (SA)

Simulated annealing is a stochastic search method
analogous to the physical annealing process where an
alloy is cooled gradually so that a minimal energy state is
achieved. SA avoids getting stuck in local optima (hill
climbing) and keeps track of the best objective value
overall. SA performs well on combinatorial problems.
Several versions of this heuristic exist (see Fleischer,
(1995) and Alrefaei et al. (1995)). SA was first
introduced by Metropolis et al. (1953). Kirkpatrick et al.
(1983) applied this approach to deterministic
optimization problems. Stuckman et al. (1991) compared
GA, SA, and Bayesian techniques in the context of
design optimization on multiple metrics including
simulation time and dimensionality.
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2.4.4 Tabu Search (TS)

Tabu search was developed by Fred Glover (1989, 1990)
for optimizing an objective function with a special
feature designed to avoid being trapped in local minima.
TS is used for solving combinatorial optimization
problems ranging from graph theory to pure and mixed
integer programming problems. It is an adaptive
procedure with the ability to utilize many other methods,
such as LP algorithms and specialized heuristics, which
it directs to overcome their limitations of getting stuck in
local optima.

In TS, a fixed-length list of explored moves is
maintained. This list represents the Tabu moves, moves
that are not allowed at the present iteration, in order to
exclude back-tracking moves. Subsequent to each move
s→s* (where s is a feasible point and s* is the best
neighbor), the opposite move s*→s is appended to the
Tabu list and the oldest move in the list is removed.
Various versions of this search technique exist. For any
TS implementation, the following are needed: a
forbidding strategy, a freeing strategy, a short-term
strategy, and a stopping criterion (Osman, 1993). The
latest research and computational comparisons have
validated the ability of TS to obtain high quality
solutions with modest computational effort, generally
dominating alternative methods tested.

2.4.5 Nelder And Mead’s Simplex Search

The search starts with points in a simplex consisting of
p+1 vertices (not all in the same plane) in the feasible
region. It proceeds by continuously dropping the worst
point in the simplex and adding a new point determined
by the reflection of the worst point through the centroid
of the remaining vertices. Disadvantages of this method
include the assumption of convex feasible region and
implementation problems involving the handling of
feasibility constraints. Box’s complex search is an
extension of Nelder and Mead’s simplex search modified
for constrained problems (Reklaitis et al., 1983). See
also Azadivar and Lee (1988), Barton and Ivey (1991),
and Tomick et al., (1995) for enhancements to the
Nelder-Mead method. Hall and Bowden (1997)
concluded that Nelder-Mead method performs better
than ES or TS with smooth convex response surfaces.

2.5 A-Teams

An A-team (asynchronous team) is a process that
involves combining various problem solving strategies
so that they can interact synergistically. De Souza and
Talukdar (1991) viewed an A-team as a process that is
both fast and robust. They have demonstrated that A-
teams consisting of GA and conventional algorithms,
such as Newton’s Method and Levenberg-Marquardt
algorithms, for solving sets of nonlinear algebraic
equations, result in considerable savings in the amount of
computational effort (number of function evaluations)
necessary for finding solutions. A-teams are inherently
suitable for multi-criteria simulation optimization
problems, and therefore, represent one of the fastest
growing areas of simulation optimization research. For
optimizing a kanban sizing problem, Hall and Bowden
(1996) utilized a two-phase approach - ES followed by
Hooke-Jeeves search method - to obtain “good”
solutions with 60% fewer simulation runs than with ES
alone.

2.6 Statistical Methods

2.6.1 Importance Sampling Methods

Importance sampling has been used effectively to
achieve significant speed ups in simulations involving
rare events, such as failure in a reliable computer system
or ATM communication network (Shahabuddin, 1995).
The basic idea of importance sampling is to simulate the
system under a different probability measure (e.g. with
different underlying probability distributions) so as to
increase the probability of typical sample paths involving
the rare event of interest. For each sample path
(observation) during the simulation, the measure being
estimated is multiplied by a correction factor to obtain an
unbiased estimate of the measure in the original system.
The main problem in importance sampling is to come up
with an appropriate change of measure for the rare event
simulation problem at hand.

2.6.2 Ranking and Selection

Ranking and selection methods are frequently employed
for practical problems, for instance, finding the best
combination of parts manufactured on various machines
to maximize productivity, or finding the best location for
a new facility to minimize cost. In these optimization
problems, some knowledge of the relationship among the
alternatives is available. These methods have the ability
to treat the optimization problem as a multi-criteria
decision problem. When the decision involves selecting
the best system design, the technique of indifference-
zone ranking may be employed. When the decision
involves selecting a subset of system designs that
contains the best design, the technique of subset
selection may be employed. In either case, the decisions
are guaranteed to be correct with a pre-specified
probability. Many ranking and selection procedures can
be found in Gupta and Panchapakesan (1979).
2.6.3 Multiple Comparisons With The Best
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If the problem is to select the best of a finite number of
system designs, multiple comparison with the best
(MCB) is an alternative to ranking and selection. In
MCB procedures inference about the relative
performance of all alternatives tested is provided. Such
inference is critical if the performance measure of
interest is not the sole criterion for decision making, e.g.,
expected throughput of a manufacturing system may be
the performance measure of interest but cost of
maintaining the system is also important. According to
Hsu and Nelson (1988), MCB combines the two most
frequently used ranking and selection techniques,
namely, indifference zone and subset selection inference.
Goldsman and Nelson (1990) devised an MCB
procedure for steady state simulation experiments based
on batching. This MCB procedure can be implemented
in a single run of each alternative under consideration,
which is important if restarting simulation experiments is
unwieldy and/or expensive.

2.7 New Developments

Many of the techniques discussed above require speedy
determination of the output variable value at a given
input parameter vector value. Much effort is being
directed to expedite this process. Parallel programming
implementations of simulation optimization models have
shown promise (see Yucesan et al. (1995), Schruben
(1992), and Heidelberger (1988) for details). A variant
of sample path optimization is applied to solve
deterministic variational inequalities which model many
equilibrium phenomena in economics, physics and
operations research in Gurkan et al. (1996). Another
method very similar in concept to sample path
optimization is the technique of retrospective
optimization proposed by Healy and Schruben (1991).
Ho et al. (1992) combined RSM and stochastic
approximation to yield a method referred to as the
gradient surface method.

3 SIMULATION OPTIMIZATION
APPLICATIONS

Simulation optimization methods have been applied to
applications with a single objective, applications that
require the optimization of multiple criteria, and
applications with non-parametric objectives. Azadivar et
al. (1996) applied a simulation optimization algorithm
based on Box’s complex search method to optimize the
locations and inventory levels of semi-finished products
in a pull-type production system. Hall et al. (1996) used
ES with a simulation model for optimizing a kanban
sizing problem. Lutz (1995) developed a procedure that
combined simulation with TS to deal with problems of
work-in-process (WIP) inventory management. Fu and
Healy (1992) applied the PA technique to inventory
models where the demand has an associated renewal
arrival process.

Tompkins and Azadivar (1995) proposed an
approach to link a GA and an object-oriented simulation
model generator to find the optimal shop floor layout.
Faccenda and Tenga (1992) presented an approach to
incorporate the process plant production operations into
the design of a facility by combining simulation and GA.
Morito et al. (1993) used an algorithm that combined SA
and simulation to find an appropriate dispatching priority
of operations to minimize the total tardiness for a
commercial flexible manufacturing system (FMS).

Brennan and Rogers (1995) employed the methods
of IPA and stochastic approximation to solve the
problem of optimizing the performance of an
asynchronous line used for component assembly in
electronics manufacturing. Manz et al. (1989) used a
simulated annealing (SA) algorithm in conjunction with
a SIMAN simulation model to find the optimal
parameter levels for operating an automated
manufacturing system. Several simulation optimization
applications, in fields as diverse as microelectronics
assembly and hospital administration, are discussed in
Akbay (1996).

Hill and Fu (1994) applied simultaneous
perturbation stochastic approximations (SPSA), which
requires only two simulations per gradient estimate,
regardless of the number of parameters of interest, to a
transportation problem. Evans et al. (1991) discussed the
applicability of traditional multi-criteria mathematical
optimization techniques - multiattribute value function,
multiattribute utility function, goal programming,
progressive articulation of preferences, and posterior
articulation of preferences - to multi-criteria simulation
optimization problems.

4 SIMULATION OPTIMIZATION SOFTWARE

A long standing goal among some of the simulation
practitioners and theoreticians was being able to guide a
series of simulations in the most effective way instead of
performing “blind” experiments and assuming that at
least one of the experiments will yield the best
alternative to implement (Glover et al., 1996). Many
simulation software developers today have become more
aware of the importance of finding optimal and near-
optimal solutions for applications in minutes, instead of
performing an exhaustive examination of relevant
alternatives in days or months. Simulation software that
includes special search procedures to guide a series of
simulations to reveal optimal or near-optimal scenarios
includes: ProModel, AutoMod, Micro Saint, LayOPT,
and FactoryOPT. A brief description of each software’s
optimization and/or statistical module follows.
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The add-on optimization module for ProModel is
called SimRunner Optimization. This module consists of
two features for analyzing and optimizing existing
ProModel simulation models. The first feature is a
factorial design of experiments that reveals the effect of
a change in input factor on the objective function. The
second feature is a multi-variable optimization that tries
various combinations of input factors to arrive at the
combination that yields the best objective function value.

AutoMod and AutoSched has an add-on package
called AutoStat, a statistical analysis package that
includes a “Select the Best” ranking and selection
procedure. This procedure finds the single best system,
or a subset containing the best system, from among a
finite number of systems (Carson, 1996).

Glover et al. (1996) described a software package
called OptQuest that integrates simulation, an intelligent
search procedure called scatter search (based on TS), a
mixed integer programming solver, and a procedure to
configure and train neural networks. It can handle
multiple objectives (provided that they are mapped into a
single final objective) and linear constraints on the input
variables. It indicates the search progress graphically.
OptQuest is customized to work with the modeling and
simulation software Micro Saint 2.0 (see Drury et al.
(1996) for Micro Saint use).

LayOPT is a facilities' layout analysis and
optimization software package that starts with an existing
block layout and attempts to improve this layout by
exchanging the locations of defined departments. These
changes are based on given flow and cost data (Grajo,
1996). FactoryOPT works with FactoryPLAN and/or
FactoryFLOW and works in AutoCAD to create the most
efficient factory designs in record time (Sly, 1996).

SIMICOM algorithm (Azadivar and Lee, 1988)
based on Box’s complex search method can be
interfaced with any modeling and simulation software.

5 CLOSING REMARKS

From the extensive literature review presented here, it
can be concluded that interest in the area of simulation
optimization is growing. More direct search methods
need to be explored for suitability to simulation
optimization problems.
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